An Introductory Survey on Attention Mechanisms in NLP Problems

被引:178
|
作者
Hu, Dichao [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2 | 2020年 / 1038卷
关键词
Natural language processing; Attention; Deep learning;
D O I
10.1007/978-3-030-29513-4_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
First derived from human intuition, later adapted to machine translation for automatic token alignment, attention mechanism, a simple method that can be used for encoding sequence data based on the importance score each element is assigned, has been widely applied to and attained significant improvement in various tasks in natural language processing, including sentiment classification, text summarization, question answering, dependency parsing, etc. In this paper, we survey through recent works and conduct an introductory summary of the attention mechanism in different NLP problems, aiming to provide our readers with basic knowledge on this widely used method, discuss its different variants for different tasks, explore its association with other techniques in machine learning, and examine methods for evaluating its performance.
引用
收藏
页码:432 / 448
页数:17
相关论文
共 50 条
  • [21] INTRODUCTORY SOCIOLOGY SURVEY
    BEST, J
    TEACHING SOCIOLOGY, 1977, 4 (03) : 271 - 276
  • [22] Carburization - introductory survey
    Rahmel, A
    Grabke, HJ
    Steinkusch, W
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 1998, 49 (04): : 221 - 225
  • [23] THE INTRODUCTORY SURVEY AND WORKSHOP
    不详
    INTERNATIONAL JOURNAL OF MENTAL HEALTH, 1994, 23 (01) : 79 - 102
  • [24] Visualizing Transformers for NLP: A Brief Survey
    Brasoveanu, Adrian M. P.
    Andonie, Razvan
    2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 270 - 279
  • [25] A Survey of Data Augmentation Approaches for NLP
    Feng, Steven Y.
    Gangal, Varun
    Wei, Jason
    Chandar, Sarath
    Vosoughi, Soroush
    Mitamura, Teruko
    Hovy, Eduard
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 968 - 988
  • [26] Spot the bot: the inverse problems of NLP
    Gromov, Vasilii A.
    Dang, Quynh Nhu
    Kogan, Alexandra S.
    Yerbolova, Assel
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [27] NLP Formulation for Polygon Optimization Problems
    Asaeedi, Saeed
    Didehvar, Farzad
    Mohades, Ali
    MATHEMATICS, 2019, 7 (01)
  • [28] Resources and components for gujarati NLP systems: a survey
    Desai, Nikita P.
    Dabhi, Vipul K.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (07) : 5391 - 5409
  • [29] Transformers in the Real World: A Survey on NLP Applications
    Patwardhan, Narendra
    Marrone, Stefano
    Sansone, Carlo
    INFORMATION, 2023, 14 (04)
  • [30] Resources and components for gujarati NLP systems: a survey
    Nikita P. Desai
    Vipul K. Dabhi
    Artificial Intelligence Review, 2022, 55 : 1 - 19