Parametric optimal control problems with singularly perturbed mixed constraints

被引:0
作者
Kostyukova, O. I. [1 ]
机构
[1] Belarussian Acad Sci, Inst Math, Minsk 220072, BELARUS
关键词
Control Problem; Asymptotic Expansion; Optimal Control Problem; Control Engineer; Solution Property;
D O I
10.1134/S1064230706010059
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Asymptotic expansions of solutions with respect to the parameter perturbance are obtained for the parametric optimal control problem with singularly perturbed mixed constraints. Based on these expansions, the solution properties are studied. The solutions are proved differentiable with respect to the parameter in the right and left neighborhoods of its nonregular value. The rules for computing the corresponding derivatives are described.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 10 条
[1]  
Dikusar V. V., 1989, QUALITATIVE NUMERICA
[2]   A SURVEY OF THE MAXIMUM-PRINCIPLES FOR OPTIMAL-CONTROL PROBLEMS WITH STATE CONSTRAINTS [J].
HARTL, RF ;
SETHI, SP ;
VICKSON, RG .
SIAM REVIEW, 1995, 37 (02) :181-218
[3]  
KOSTYUKOVA O. I., 2003, COMP MATH MATH PHYS, V43, P26
[4]   A parametric convex optimal control problem for a linear system [J].
Kostyukova, OI .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2002, 66 (02) :187-199
[5]  
KOSTYUKOVA OI, 2005, BELARUSSIAN ACAD SCI, P25
[6]  
KOSTYUKOVA OI, 2003, ZH VYCH MAT MAT FIZ, V43, P1364
[7]   Sensitivity analysis for optimal control problems subject to higher order state constraints [J].
Malanowski, K ;
Maurer, H .
ANNALS OF OPERATIONS RESEARCH, 2001, 101 (1-4) :43-73
[8]  
Malanowski K., 1998, DISCRETE CONTINUOUS, V4, P241
[9]  
Vasil'eva A. B., 1973, Asymptotic Expansions of Solutions of Singularly Perturbed Equations
[10]  
[No title captured]