Environmental fatigue testing of type 316 stainless steel in 310°C water

被引:0
|
作者
Cho, Hyunchul [1 ]
Kim, Byoung Koo [1 ]
Kim, In Sup [1 ]
Oh, Seung Jong [1 ]
Jung, Dae Yul [1 ]
Byeon, Seong Cheol [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Taejon 305701, South Korea
来源
Proceedings of the ASME Pressure Vessels and Piping Conference - 2005, Vol 1 | 2005年
关键词
low cycle fatigue; hardening; dynamic strain aging; fatigue life;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Low cycle fatigue tests were conducted to investigate fatigue behaviors of Type 316 stainless steel in 310 degrees C low oxygen water. In the tests, strain rates were 4 x 10(-4) 8 x 10(-5) s(-1) and applied strain amplitudes were 0.4, 0.6, 0.8, and 1.0 %. The test environment was pure water at a temperature of 310 degrees C, pressure of 15 MPa, and dissolved oxygen concentration of 1 ppb. Type 316 stainless steel underwent a primary hardening, followed by a moderate softening for both strain rates in 310 degrees C low oxygen water. The primary hardening was much less pronounced and secondary hardening was observed at lower strain amplitude. On the other hand, the cyclic stress response in room temperature air exhibited gradual softening and did not show any hardening. The fatigue life of the studied steel in 310 degrees C low oxygen water was shorter than that of the statistical model in air. The reduction of fatigue life was enhanced with decreasing strain rate from 4 x 10(-4) to 8 x 10(-1) s(-1).
引用
收藏
页码:165 / 169
页数:5
相关论文
共 50 条
  • [41] Synergistic effect of mechanical and environmental damages of 316LN stainless steel under different fatigue strain amplitudes in high-temperature pressurized water
    Zhang, Ziyu
    Tan, Jibo
    Wu, Xinqiang
    Han, En-Hou
    Ke, Wei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 743 : 243 - 250
  • [42] Effect of grain size on the low cycle fatigue behavior of 316LN stainless steel in high temperature water
    Wu, H. C.
    Li, C. T.
    Fang, K. W.
    Xue, F.
    Yang, B.
    Song, X. P.
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2017, 68 (11): : 1180 - 1189
  • [43] CORROSION FATIGUE OF NUCLEAR-GRADE STAINLESS STEEL IN HIGH TEMPERATURE WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL
    Wu Xinqiang
    Xu Song
    Han En-Hou
    Ke Wei
    ACTA METALLURGICA SINICA, 2011, 47 (07) : 790 - 796
  • [44] Effects of of temperature on corrosion fatigue behavior of 316LN stainless steel in high-temperature pressurized water
    Zhang, Ziyu
    Tan, Jibo
    Wu, Xinqiang
    Han, En-Hou
    Ke, Wei
    Rao, Jiancun
    CORROSION SCIENCE, 2019, 146 (80-89) : 80 - 89
  • [45] Isothermal and thermomechanical fatigue behaviour of type 316LN austenitic stainless steel base metal and weld joint
    Kumar, T. Suresh
    Yadav, S. D.
    Nagesha, A.
    Kannan, R.
    Reddy, G. V. Prasad
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 772
  • [47] Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water
    Tan Jibo
    Wang Xiang
    Wu Xinqiang
    Han En-Hou
    ACTA METALLURGICA SINICA, 2021, 57 (03) : 309 - 316
  • [48] Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water
    Tan, Jibo
    Wu, Xinqiang
    Han, En-Hou
    Ke, Wei
    Wang, Xiang
    Sun, Haitao
    JOURNAL OF NUCLEAR MATERIALS, 2017, 489 : 33 - 41
  • [49] Peculiarity of notch effect on high cycle fatigue strength of a stainless steel SUS316NG at 300°C
    Dept. of Precision Mech., Chuo Univ., Bunkyo-ku, Tokyo, 112-8551
    不详
    不详
    不详
    不详
    Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57 (02) : 147 - 153
  • [50] Damage due to low-cycle fatigue of type 316 stainless steel (Fatigue life under variable loading and influence of internal cracks)
    Kamaya M.
    Kawakubo M.
    Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76 (768): : 40 - 50