Subpixel Mapping Based on Multisource Remote Sensing Fusion Data for Land-Cover Classes

被引:6
作者
Wang, Peng [1 ,2 ,3 ,4 ]
Wang, Yulan [1 ]
Zhang, Lei [5 ]
Ni, Kang [6 ,7 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Radar Imaging & Microwave Photon, Nanjing 210016, Peoples R China
[2] Xian Res Inst Surveying & Mapping, State Key Lab Geoinformat Engn, Xian 710054, Peoples R China
[3] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430074, Peoples R China
[4] Hubei Univ, Hubei Key Lab Reg Dev & Environm Response, Wuhan 430062, Peoples R China
[5] Tongji Univ, Shanghai Autonomous Intelligent Unmanned Syst Sci, Shanghai 200082, Peoples R China
[6] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
[7] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Laser radar; Principal component analysis; Laboratories; Spatial resolution; Mathematical model; Feature extraction; Feature fusion; land-cover classes; multisource remote sensing data; pan-sharpening; subpixel mapping (SPM); PIXEL;
D O I
10.1109/LGRS.2021.3072943
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Subpixel mapping (SPM) based on multisource remote sensing fusion data (MRSFD) for land-cover classes, called SPM-MRSFD, is proposed in this letter. First, the original hyperspectral image and the auxiliary panchromatic image are fused to produce the high spatial and spectral resolution fused image by pan-sharpening technology. Second, the fused image with spatial-spectral information and the auxiliary digital surface model (DSM) of light detection and ranging (LiDAR) with elevation information are fused to obtain the MRSFD with spatial-spectral elevation information by feature fusion. Finally, the fractional images with the proportions of subpixels belonging to land-cover classes are derived by unmixing the MRSFD, and the classes labels are allocated to subpixels to obtain the final SPM result according to these proportions' information. The main contribution of this work is that multiple types of auxiliary information (i.e., spatial-spectral elevation information) from MRSFD is fully utilized and the accuracy of SPM result is improved. Experimental results show that SPM-MRSFD obtains more accurate mapping results than state-of-the-art SPM methods.
引用
收藏
页数:5
相关论文
共 21 条
[2]   Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest [J].
Debes, Christian ;
Merentitis, Andreas ;
Heremans, Roel ;
Hahn, Juergen ;
Frangiadakis, Nikolaos ;
van Kasteren, Tim ;
Liao, Wenzhi ;
Bellens, Rik ;
Pizurica, Aleksandra ;
Gautama, Sidharta ;
Philips, Wilfried ;
Prasad, Saurabh ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2405-2418
[3]   The pixel: A snare and a delusion [J].
Fisher, P .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (03) :679-685
[4]   Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J].
Heinz, DC ;
Chang, CI .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03) :529-545
[5]   Denoising-Based Multiscale Feature Fusion for Remote Sensing Image Captioning [J].
Huang, Wei ;
Wang, Qi ;
Li, Xuelong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (03) :436-440
[6]   A super-resolution mapping method using local indicator variograms [J].
Jin, Huiran ;
Mountrakis, Giorgos ;
Li, Peijun .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (24) :7747-7773
[7]   Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features [J].
Liao, Wenzhi ;
Pizurica, Aleksandra ;
Bellens, Rik ;
Gautama, Sidharta ;
Philips, Wilfried .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (03) :552-556
[8]   Hyperspectral Pansharpening: A Review [J].
Loncan, Laetitia ;
Almeida, Luis B. ;
Bioucas-Dias, Jose M. ;
Briottet, Xavier ;
Chanussot, Jocelyn ;
Dobigeon, Nicolas ;
Fabre, Sophie ;
Liao, Wenzhi ;
Licciardi, Giorgio A. ;
Simoes, Miguel ;
Tourneret, Jean-Yves ;
Veganzones, Miguel A. ;
Vivone, Gemine ;
Wei, Qi ;
Yokoya, Naoto .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2015, 3 (03) :27-46
[9]   A New Spatial Attraction Model for Improving Subpixel Land Cover Classification [J].
Lu, Lizhen ;
Huang, Yanlin ;
Di, Liping ;
Hang, Danwei .
REMOTE SENSING, 2017, 9 (04)
[10]   Superresolution mapping using a Hopfield neural network with LIDAR data [J].
Nguyen, MQ ;
Atkinson, PM ;
Lewis, HG .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (03) :366-370