A Primer on the Bayesian Approach to High-Density Single-Molecule Trajectories Analysis

被引:21
作者
El Beheiry, Mohamed [1 ,2 ,6 ]
Tuerkcan, Silvan [3 ]
Richly, Maximilian U. [4 ]
Triller, Antoine [5 ]
Alexandrou, Antigone [4 ]
Dahan, Maxime [1 ,2 ,7 ]
Masson, Jean-Baptiste [6 ,7 ]
机构
[1] PSL Res Univ, Inst Curie, Lab Physicochim, Paris, France
[2] Univ Paris 04, Dept Radiat Oncol, Paris, France
[3] Stanford Univ, Sch Med, Div Med Phys, Palo Alto, CA 94304 USA
[4] Univ Paris Saclay, Ecole Polytech, Lab Opt & Biosci, Palaiseau, France
[5] PSL Res Univ, Ecole Normale Super, Biol Cellulaire Synapse, Paris, France
[6] Inst Pasteur, Phys Biol Syst, Paris, France
[7] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA USA
关键词
STOCHASTIC-PROCESSES; LIVING CELLS; INFERENCE; DIFFUSION; DYNAMICS; RECEPTORS; MEMBRANE; GEPHYRIN; PROTEINS; SYSTEMS;
D O I
10.1016/j.bpj.2016.01.018
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Tracking single molecules in living cells provides invaluable information on their environment and on the interactions that underlie their motion. New experimental techniques now permit the recording of large amounts of individual trajectories, enabling the implementation of advanced statistical tools for data analysis. In this primer, we present a Bayesian approach toward treating these data, and we discuss how it can be fruitfully employed to infer physical and biochemical parameters from single-molecule trajectories.
引用
收藏
页码:1209 / 1215
页数:7
相关论文
共 36 条
[21]   Inferring Maps of Forces inside Cell Membrane Microdomains [J].
Masson, J. -B. ;
Casanova, D. ;
Tuerkcan, S. ;
Voisinne, G. ;
Popoff, M. R. ;
Vergassola, M. ;
Alexandrou, A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)
[22]   Mapping the Energy and Diffusion Landscapes of Membrane Proteins at the Cell Surface Using High-Density Single-Molecule Imaging and Bayesian Inference: Application to the Multiscale Dynamics of Glycine Receptors in the Neuronal Membrane [J].
Masson, Jean-Baptiste ;
Dionne, Patrice ;
Salvatico, Charlotte ;
Renner, Marianne ;
Specht, Christian G. ;
Triller, Antoine ;
Dahan, Maxime .
BIOPHYSICAL JOURNAL, 2014, 106 (01) :74-83
[23]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[24]   Optimal diffusion coefficient estimation in single-particle tracking [J].
Michalet, Xavier ;
Berglund, Andrew J. .
PHYSICAL REVIEW E, 2012, 85 (06)
[25]  
Pinaud F, 2010, NAT METHODS, V7, P275, DOI [10.1038/NMETH.1444, 10.1038/nmeth.1444]
[26]   Calibrating optical tweezers with Bayesian inference [J].
Richly, Maximilian U. ;
Tuerkcan, Silvan ;
Le Gall, Antoine ;
Fiszman, Nicolas ;
Masson, Jean-Baptiste ;
Westbrook, Nathalie ;
Perronet, Karen ;
Alexandrou, Antigoni .
OPTICS EXPRESS, 2013, 21 (25) :31578-31590
[27]  
Risken H., 1997, FOKKER PLANCK EQUATI
[28]  
Schulman LS., 2005, Techniques And Applications of Path Integration
[29]   Quantitative Nanoscopy of Inhibitory Synapses: Counting Gephyrin Molecules and Receptor Binding Sites [J].
Specht, Christian G. ;
Izeddin, Ignacio ;
Rodriguez, Pamela C. ;
El Beheiry, Mohamed ;
Rostaing, Philippe ;
Darzacq, Xavier ;
Dahan, Maxime ;
Triller, Antoine .
NEURON, 2013, 79 (02) :308-321
[30]   Bayesian Decision Tree for the Classification of the Mode of Motion in Single-Molecule Trajectories [J].
Tuerkcan, Silvan ;
Masson, Jean-Baptiste .
PLOS ONE, 2013, 8 (12)