High-resolution hybrid inversion of IASI ammonia columns to constrain US ammonia emissions using the CMAQ adjoint model

被引:26
作者
Chen, Yilin [1 ]
Shen, Huizhong [1 ]
Kaiser, Jennifer [1 ,2 ]
Hu, Yongtao [1 ]
Capps, Shannon L. [3 ]
Zhao, Shunliu [4 ]
Hakami, Amir [4 ]
Shih, Jhih-Shyang [5 ]
Pavur, Gertrude K. [1 ]
Turner, Matthew D. [6 ]
Henze, Daven K. [7 ]
Resler, Jaroslav [8 ]
Nenes, Athanasios [9 ,10 ]
Napelenok, Sergey L. [11 ]
Bash, Jesse O. [11 ]
Fahey, Kathleen M. [11 ]
Carmichael, Gregory R. [12 ]
Chai, Tianfeng [13 ]
Clarisse, Lieven [14 ]
Coheur, Pierre-Francois [14 ]
Van Damme, Martin [14 ]
Russell, Armistead G. [1 ]
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[3] Drexel Univ, Dept Civil Architectural & Environm Engn, Philadelphia, PA 19104 USA
[4] Carleton Univ, Dept Civil & Environm Engn, Ottawa, ON K1S 5B6, Canada
[5] Resources Future Inc, Washington, DC 20036 USA
[6] SAIC, Stennis Space Ctr, MS 39529 USA
[7] Univ Colorado, Mech Engn Dept, Boulder, CO 80309 USA
[8] Czech Acad Sci, Inst Comp Sci, Prague 18207, Czech Republic
[9] Fdn Res & Technol Hellas, Inst Chem Engn Sci, Patras 26504, Greece
[10] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn, CH-1015 Lausanne, Switzerland
[11] US EPA, Atmospher & Environm Syst Modeling Div, Res Triangle Pk, NC 27711 USA
[12] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA
[13] Univ Maryland, NOAA Air Resources Lab ARL, Cooperat Inst Satellites Earth Syst Studies CISES, College Pk, MD 20740 USA
[14] Univ Libre Bruxelles ULB, Spect Quantum Chem & Atmospher Remote Sensing SQ, Brussels, Belgium
基金
美国国家环境保护局; 美国国家航空航天局;
关键词
NITROGEN DEPOSITION; UNITED-STATES; SATELLITE-OBSERVATIONS; ATMOSPHERIC AMMONIA; NH3; VALIDATION; SIMULATION; CALIFORNIA; RETRIEVAL; ALGORITHM;
D O I
10.5194/acp-21-2067-2021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ammonia (NH3) emissions have large impacts on air quality and nitrogen deposition, influencing human health and the well-being of sensitive ecosystems. Large uncertainties exist in the "bottom-up" NH3 emission inventories due to limited source information and a historical lack of measurements, hindering the assessment of NH3-related environmental impacts. The increasing capability of satellites to measure NH3 abundance and the development of modeling tools enable us to better constrain NH3 emission estimates at high spatial resolution. In this study, we constrain the NH3 emission estimates from the widely used 2011 National Emissions Inventory (2011 NEI) in the US using Infrared Atmospheric Sounding Interferometer NH3 column density measurements (IASI-NH3) gridded at a 36 km by 36 km horizontal resolution. With a hybrid inverse modeling approach, we use the Community Multiscale Air Quality Modeling System (CMAQ) and its multiphase adjoint model to optimize NH3 emission estimates in April, July, and October. Our optimized emission estimates suggest that the total NH3 emissions are biased low by 26 % in 2011 NEI in April with overestimation in the Midwest and underestimation in the Southern States. In July and October, the estimates from NEI agree well with the optimized emission estimates, despite a low bias in hotspot regions. Evaluation of the inversion performance using independent observations shows reduced underestimation in simulated ambient NH3 concentra- tion in all 3 months and reduced underestimation in NH4 wet deposition in April. Implementing the optimized NH3 emission estimates improves the model performance in simulating PM2.5 concentration in the Midwest in April. The model results suggest that the estimated contribution of ammonium nitrate would be biased high in a priori NEI-based assessments. The higher emission estimates in this study also imply a higher ecological impact of nitrogen deposition originating from NH3 emissions.
引用
收藏
页码:2067 / 2082
页数:16
相关论文
共 67 条
  • [1] [Anonymous], 2022, North American Regional Reanalysis
  • [2] [Anonymous], 2012, 2012 Census Ag Atlas Maps: All Wheat for Grain, Harvested Acres: 2012
  • [3] A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition estimates for 2002-2006
    Appel, K. W.
    Foley, K. M.
    Bash, J. O.
    Pinder, R. W.
    Dennis, R. L.
    Allen, D. J.
    Pickering, K.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (02) : 357 - 371
  • [4] Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model
    Bash, J. O.
    Cooter, E. J.
    Dennis, R. L.
    Walker, J. T.
    Pleim, J. E.
    [J]. BIOGEOSCIENCES, 2013, 10 (03) : 1635 - 1645
  • [5] Bobbink R., 2014, Nitrogen Deposition, Critical Loads and Biodiversity, P127, DOI DOI 10.1007/978-94-007-7939-6_14
  • [6] Brasseur G. P., 2017, MODELING ATMOSPHERIC, P520
  • [7] A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION
    BYRD, RH
    LU, PH
    NOCEDAL, J
    ZHU, CY
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) : 1190 - 1208
  • [8] Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system
    Byun, Daewon
    Schere, Kenneth L.
    [J]. APPLIED MECHANICS REVIEWS, 2006, 59 (1-6) : 51 - 77
  • [9] Inverse modeling of NH3 sources using CrIS remote sensing measurements
    Cao, Hansen
    Henze, Daven K.
    Shephard, Mark W.
    Dammers, Enrico
    Cady-Pereira, Karen
    Alvarado, Matthew
    Lonsdale, Chantelle
    Luo, Gan
    Yu, Fangqun
    Zhu, Liye
    Danielson, Camille G.
    Edgerton, Eric S.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (10)
  • [10] Greater Contribution From Agricultural Sources to Future Reactive Nitrogen Deposition in the United States
    Chen, Yilin
    Shen, Huizhong
    Shih, Jhih-Shyang
    Russell, Armistead G.
    Shao, Shuai
    Hu, Yongtao
    Odman, Mehmet Talat
    Nenes, Athanasios
    Pavur, Gertrude K.
    Zou, Yufei
    Chen, Zhihong
    Smith, Richard A.
    Burtraw, Dallas
    Driscoll, Charles T.
    [J]. EARTHS FUTURE, 2020, 8 (11)