A new augmented Lagrangian approach to duality and exact penalization

被引:3
|
作者
Lalitha, C. S. [1 ]
机构
[1] Univ Delhi, Rajdhani Coll, Dept Math, New Delhi 110075, India
关键词
Augmented Lagrangian; Augmenting function; Nonconvex problem; Duality; FRAMEWORK;
D O I
10.1007/s10898-009-9420-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce a new notion of augmenting function known as indicator augmenting function to establish a minmax type duality relation, existence of a path of solution converging to optimal value and a zero duality gap relation for a nonconvex primal problem and the corresponding Lagrangian dual problem. We also obtain necessary and sufficient conditions for an exact penalty representation in the framework of indicator augmented Lagrangian.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 50 条
  • [21] Further Study on Augmented Lagrangian Duality Theory
    X. X. Huang
    X. Q. Yang
    Journal of Global Optimization, 2005, 31 : 193 - 210
  • [22] Augmented Lagrangian Duality for Composite Optimization Problems
    Chao Kan
    Wen Song
    Journal of Optimization Theory and Applications, 2015, 165 : 763 - 784
  • [23] Further study on augmented Lagrangian duality theory
    Huang, XX
    Yang, XQ
    JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (02) : 193 - 210
  • [24] Duality in convex optimization for the hyperbolic augmented Lagrangian
    Ramirez, Lennin Mallma
    Maculan, Nelson
    Xavier, Adilson Elias
    Xavier, Vinicius Layter
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [25] Augmented Lagrangian Duality for Composite Optimization Problems
    Kan, Chao
    Song, Wen
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (03) : 763 - 784
  • [26] EXACT AUGMENTED LAGRANGIAN APPROACH TO MULTILEVEL OPTIMIZATION OF LARGE-SCALE SYSTEMS
    DELUCA, A
    DIPILLO, G
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1987, 18 (01) : 157 - 176
  • [27] On exact augmented Lagrangian functions in nonlinear programming
    DiPillo, G
    Lucidi, S
    NONLINEAR OPTIMIZATION AND APPLICATIONS, 1996, : 85 - 100
  • [28] DUALITY IN NONLINEAR PROGRAMS USING AUGMENTED LAGRANGIAN FUNCTIONS
    GONEN, A
    AVRIEL, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 121 (01) : 39 - 56
  • [29] Stability and Duality of Nonconvex Problems via Augmented Lagrangian
    A. Y. Azimov
    R. N. Gasimov
    Cybernetics and Systems Analysis, 2002, 38 (3) : 412 - 421
  • [30] Exact augmented Lagrangian functions for nonlinear semidefinite programming
    Fukuda, Ellen H.
    Lourenco, Bruno F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 71 (02) : 457 - 482