Parameter estimation of the Pareto distribution using least squares approaches blended with different rank methods and its applications in modeling natural catastrophes

被引:4
作者
Hussain, Shahzad [1 ]
Bhatti, Sajjad Haider [1 ]
Ahmad, Tanvir [1 ]
Shehzad, Muhammad Ahmed [2 ]
机构
[1] Govt Coll Univ, Dept Stat, Dr Zakir Hussain Block,Allama Iqbal Rd, Faisalabad, Pakistan
[2] Bahauddin Zakariya Univ, Dept Stat, Multan, Pakistan
关键词
Estimation; Graphical methods; Least squares method; Relative least squares method; Weighted least squares method; Modeling natural catastrophes; REGRESSION; WEIBULL; PEAKS;
D O I
10.1007/s11069-021-04654-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The current article evaluates least-squares-based approaches for estimating parameters of the two-parameter Pareto distribution. The algebraic expressions for least squares (LS), relative least squares (RLS) and weighted least squares (WLS) estimators are derived by generating empirical cumulative distribution function (CDF) using mean rank, median rank and symmetrical CDF methods. The performance of the estimation approaches is evaluated through Monte Carlo simulations for different combinations of parameter values and sample sizes. The performance of the regression-based methods is then compared with one another and with the traditional maximum likelihood (ML) estimation method. Our simulation results unveil that among the regression-based methods, RLS has an improved or better performance compared to the other two regression-based approaches for samples of all sizes. Moreover, RLS performs better than the ML method for small samples. Among the rank methods used for generating empirical CDF, it is observed that the mean rank method outperformed other two rank methods. The simulation results are further corroborated by the application of all the methods on two real-life datasets representing damages caused by natural catastrophes.
引用
收藏
页码:1693 / 1708
页数:16
相关论文
共 46 条
[1]   Parameter estimation for the truncated pareto distribution [J].
Aban, IB ;
Meerschaert, MM ;
Panorska, AK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :270-277
[2]   Geometrical properties of Pareto distribution [J].
Abdell-All, NH ;
Mahmoud, MAW ;
Abd-Ellah, HN .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) :321-339
[3]   Marshall-Olkin Generalized Pareto Distribution: Bayesian and Non Bayesian Estimation [J].
Ahmad, Hanan A. Haj ;
Almetwally, Ehab M. .
PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2020, 16 (01) :21-33
[4]  
Al-Fawzan, 2000, KING ABDULAZIZ CITY
[5]  
Alqallaf F., 2015, Appl. Math. Inf. Sci., V9, P1167
[6]  
Arnold BC., 2008, ENCY STAT SCI
[7]   Monte Carlo Comparison of the Parameter Estimation Methods for the Two-Parameter Gumbel Distribution [J].
Aydin, Demet ;
Senoglu, Birdal .
JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2015, 14 (02) :123-140
[8]   ESTIMATION OF WEIBULL PARAMETERS USING A WEIGHT FUNCTION [J].
BERGMAN, B .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1986, 5 (06) :611-614
[9]   Efficient estimation of Pareto model using modified maximum likelihood estimators [J].
Bhatti, S. Haider ;
Hussain, S. ;
Ahmad, T. ;
Aftab, M. ;
Raza, M. A. ;
Tahir, M. .
SCIENTIA IRANICA, 2019, 26 (01) :605-614
[10]   Efficient estimation of Pareto model: Some modified percentile estimators [J].
Bhatti, Sajjad Haider ;
Hussain, Shahzad ;
Ahmed, Tanvir ;
Aslam, Muhammad ;
Aftab, Muhammad ;
Raza, Muhammad Ali .
PLOS ONE, 2018, 13 (05)