Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy

被引:44
作者
Abdo, Mohamad [1 ,2 ,3 ]
Sheng, Shaoxiang [1 ]
Rolf-Pissarczyk, Steffen [2 ,3 ]
Arnhold, Lukas [1 ]
Burgess, Jacob A. J. [4 ]
Isobe, Masahiko [2 ]
Malavolti, Luigi [1 ,2 ]
Loth, Sebastian [1 ,2 ,3 ]
机构
[1] Univ Stuttgart, Inst Funct Matter & Quantum Technol, D-70569 Stuttgart, Germany
[2] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[3] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany
[4] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
THz generation; variable repetition rate; scanning tunneling microscopy; near-field tip enhancement; THz-coupled STM; pump-probe spectroscopy;
D O I
10.1021/acsphotonics.0c01652
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Broadband THz pulses enable ultrafast electronic transport experiments on the nanoscale by coupling THz electric fields into the devices with antennas, asperities, or scanning probe tips. Here, we design a versatile THz source optimized for driving the highly resistive tunnel junction of a scanning tunneling microscope. The source uses optical rectification in lithium niobate to generate arbitrary THz pulse trains with freely adjustable repetition rates between 0.5 and 41 MHz. These induce subpico-second voltage transients in the tunnel junction with peak amplitudes between 0.1 and 12 V, achieving a conversion efficiency of 0.4 V/(kV/cm) from far-field THz peak electric field strength to peak junction voltage in the STM. Tunnel currents in the quantum limit of less than one electron per THz pulse are readily detected at multi-MHz repetition rates. The ability to tune between high pulse energy and high signal fidelity makes this THz source design effective for exploration of ultrafast and atomic-scale electron dynamics.
引用
收藏
页码:702 / 708
页数:7
相关论文
共 35 条
[1]   PICOSECOND PHOTOCONDUCTING HERTZIAN DIPOLES [J].
AUSTON, DH ;
CHEUNG, KP ;
SMITH, PR .
APPLIED PHYSICS LETTERS, 1984, 45 (03) :284-286
[2]   Terahertz Spectroscopy [J].
Baxter, Jason B. ;
Guglietta, Glenn W. .
ANALYTICAL CHEMISTRY, 2011, 83 (12) :4342-4368
[3]   Generation of Intense Terahertz Radiation via Optical Methods [J].
Blanchard, Francois ;
Sharma, Gargi ;
Razzari, Luca ;
Ropagnol, Xavier ;
Bandulet, Heidi-Christina ;
Vidal, Francois ;
Morandotti, Roberto ;
Kieffer, Jean-Claude ;
Ozaki, Tsuneyuki ;
Tiedje, Henry ;
Haugen, Harold ;
Reid, Matt ;
Hegmann, Frank .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (01) :5-16
[4]  
Brenneis A, 2015, NAT NANOTECHNOL, V10, P135, DOI [10.1038/nnano.2014.276, 10.1038/NNANO.2014.276]
[5]   Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging [J].
Cocker, Tyler L. ;
Peller, Dominik ;
Yu, Ping ;
Repp, Jascha ;
Huber, Rupert .
NATURE, 2016, 539 (7628) :263-+
[6]  
Cocker TL, 2013, NAT PHOTONICS, V7, P620, DOI [10.1038/NPHOTON.2013.151, 10.1038/nphoton.2013.151]
[7]   THz imaging and sensing for security applications - explosives, weapons and drugs [J].
Federici, JF ;
Schulkin, B ;
Huang, F ;
Gary, D ;
Barat, R ;
Oliveira, F ;
Zimdars, D .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (07) :S266-S280
[8]   Attosecond coherent manipulation of electrons in tunneling microscopy [J].
Garg, M. ;
Kern, K. .
SCIENCE, 2020, 367 (6476) :411-+
[9]   Toward real-time terahertz imaging [J].
Guerboukha, Hichem ;
Nallappan, Kathirvel ;
Skorobogatiy, Maksim .
ADVANCES IN OPTICS AND PHOTONICS, 2018, 10 (04) :843-938
[10]   Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities [J].
Hebling, Janos ;
Yeh, Ka-Lo ;
Hoffmann, Matthias C. ;
Bartal, Balazs ;
Nelson, Keith A. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (07) :B6-B19