SOME REMARKS ON DIFFERENTIAL IDENTITIES IN RINGS

被引:0
作者
Raza, Mohd Arif [1 ]
Alhazmi, Husain [1 ]
Ali, Shakir [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci & ATS RABIGH, Dept Math, Jeddah, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2021年 / 45卷 / 02期
关键词
(Semi)-prime ring; derivation; Engel polynomial; maximal right ring of quotients; generalized polynomial identity (GPI); GENERALIZED DERIVATIONS; IDEMPOTENT VALUES; PRIME; COMMUTATORS;
D O I
10.46793/KgJMat2102.259R
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 < k and m, k is an element of Z(+). In this manuscript, we analyse the action of (semi)-prime rings satisfying certain differential identities on some suitable subset of rings. To be more specific, we discuss the behaviour of the semiprime ring R. satisfying the differential identities ([d([s ,t](m)), [s, t](m)])(k) = [d ([s, t](m)), [s, t](m)] for every s,t is an element of R.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 20 条
[1]  
ASHRAF M., 2002, RESULTS MATH, V42, P3
[2]  
Ashraf M, 2018, MATH REP, V20, P51
[3]  
Beidar K.I., 1996, RINGS GEN IDENTITIES, V196
[4]   ON DERIVATIONS AND COMMUTATIVITY IN PRIME-RINGS [J].
BELL, HE ;
DAIF, MN .
ACTA MATHEMATICA HUNGARICA, 1995, 66 (04) :337-343
[5]   GPIS HAVING COEFFICIENTS IN UTUMI QUOTIENT-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :723-728
[6]  
Daif M. N., 1992, Internat. J. Math. & Math. Sci., V15, P205
[7]   Commutators with idempotent values on multilinear polynomials in prime rings [J].
De Filippis, Vincenzo ;
Raza, Mohd Arif ;
Rehman, Nadeem Ur .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (01) :91-98
[9]   RINGS WITH ALGEBRAIC N-ENGEL ELEMENTS [J].
GIAMBRUNO, A ;
GONCALVES, JZ ;
MANDEL, A .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (05) :1685-1701
[10]  
Herstein I. N., 1957, CAN J MATH, V9, P583, DOI DOI 10.4153/CJM-1957-066-0