Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding

被引:381
作者
Wu, Xinyu [1 ,2 ]
Han, Bingyong [1 ]
Zhang, Hao-Bin [1 ]
Xie, Xi [3 ,4 ]
Tu, Tingxiang [1 ]
Zhang, Yu [1 ]
Dai, Yang [1 ]
Yang, Rui [3 ,4 ]
Yu, Zhong-Zhen [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Key Lab Adv Funct Polymer Composites, Beijing 100029, Peoples R China
[3] Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230000, Anhui, Peoples R China
[4] Chinese Acad Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Electromagnetic interference shielding; MXene foams; Compressibility; Electrical conductivity; Polydimethylsiloxane; GRAPHENE AEROGELS; ENERGY-STORAGE; NANOCOMPOSITES; TRANSITION; FABRICATION; LIGHTWEIGHT; COMPOSITE; ALGINATE;
D O I
10.1016/j.cej.2019.122622
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lightweight and compressible electromagnetic interference (EMI) shielding polymer nanocomposites are urgently required to solve increasingly serious electromagnetic pollutions. Two-dimensional transition metal carbides and nitrides (MXenes), especially Ti3C2Tx, are ideal candidates for constructing highly efficient conduction networks in polymer matrices due to their intriguing layered structure and high electrical conductivity. Herein, compressible and electrically conductive polydimethylsiloxane (PDMS)-coated MXene foams are fabricated by preforming three-dimensional (3D) MXene aerogel architectures assisted with sodium alginate (SA) followed by coating a thin layer of PDMS to enhance structural stability and durability of the porous architectures. Consequently, the lightweight MXene/SA hybrid aerogel achieves an outstanding conductivity of 2211 Sm-1 and a high average EMI shielding efficiency of 70.5 dB. Furthermore, the PDMS coating effectively endows the 3D conductance network with excellent compressibility and durability. The PDMS-coated MXene foam with 6.1 wt% of MXene reserves its high EMI shielding efficiency of 48.2 dB after 500 compression-release cycles. The lightweight, compressible and conductive PDMS-coated MXene foam is thus promising for applications in EMI shielding gaskets, wearable electronics, sensors and other specific areas.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[2]   Bioinspired large-scale aligned porous materials assembled with dual temperature gradients [J].
Bai, Hao ;
Chen, Yuan ;
Delattre, Benjamin ;
Tomsia, Antoni P. ;
Ritchie, Robert O. .
SCIENCE ADVANCES, 2015, 1 (11)
[3]   3D assembly of Ti3C2-MXene directed by water/oil interfaces [J].
Bian, Renji ;
Lin, Ruizhi ;
Wang, Guilin ;
Lu, Gang ;
Zhi, Weiqiang ;
Xiang, Shanglin ;
Wang, Tingwei ;
Clegg, Paul S. ;
Cai, Dongyu ;
Huang, Wei .
NANOSCALE, 2018, 10 (08) :3621-3625
[4]   Alternative binders for sustainable electrochemical energy storage - the transition to aqueous electrode processing and bio-derived polymers [J].
Bresser, Dominic ;
Buchholz, Daniel ;
Moretti, Arianna ;
Varzi, Alberto ;
Passerini, Stefano .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3096-3127
[5]   Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties [J].
Cao, Wen-Tao ;
Chen, Fei-Fei ;
Zhu, Ying-Jie ;
Zhang, Yong-Gang ;
Jiang, Ying-Ying ;
Ma, Ming-Guo ;
Chen, Feng .
ACS NANO, 2018, 12 (05) :4583-4593
[6]   High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding [J].
Chen, Yu ;
Zhang, Hao-Bin ;
Yang, Yanbing ;
Wang, Mu ;
Cao, Anyuan ;
Yu, Zhong-Zhen .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (03) :447-455
[7]   Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding [J].
Chen, Zongping ;
Xu, Chuan ;
Ma, Chaoqun ;
Ren, Wencai ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1296-1300
[8]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[9]   A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding [J].
Cui, Cheng-Hua ;
Yan, Ding-Xiang ;
Pang, Huan ;
Jia, Li-Chuan ;
Xu, Xin ;
Yang, Su ;
Xu, Jia-Zhuang ;
Li, Zhong-Ming .
CHEMICAL ENGINEERING JOURNAL, 2017, 323 :29-36
[10]   Freezing as a path to build complex composites [J].
Deville, S ;
Saiz, E ;
Nalla, RK ;
Tomsia, AP .
SCIENCE, 2006, 311 (5760) :515-518