Noninformative priors for one-parameter item response models

被引:25
作者
Ghosh, M
Ghosh, A
Chen, MH
Agresti, A
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[2] Eli Lilly & Co, Lilly Corp Ctr, Indianapolis, IN 46285 USA
[3] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
关键词
Gibbs sampling; improper prior; propriety; logit model; Markov chain Monte Carlo; probit model; Rasch model;
D O I
10.1016/S0378-3758(99)00201-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a unified Bayesian approach for the analysis of one-parameter item response models. A necessary and sufficient condition is given for the propriety of posteriors under improper priors with nonidentifiable likelihoods. Posterior distributions for item and subject parameters may be improper when the sum of the binary responses for an item or subject takes its minimum or maximum possible value. When the item parameters have a flat prior but the item totals do not fall at a boundary value, we prove the propriety of the Bayesian joint posterior under some sufficient conditions on the joint (proper) distribution of the subject parameters. The methods are implemented using Markov chain Monte Carlo and illustrated with an example from a cross-over study comparing three medical treatments. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: primary 62F15; secondary 62P15.
引用
收藏
页码:99 / 115
页数:17
相关论文
共 37 条
[1]   DISTRIBUTION-FREE FITTING OF LOGIT-MODELS WITH RANDOM EFFECTS FOR REPEATED CATEGORICAL RESPONSES [J].
AGRESTI, A .
STATISTICS IN MEDICINE, 1993, 12 (21) :1969-1987
[2]   BAYESIAN-ESTIMATION OF NORMAL OGIVE ITEM RESPONSE CURVES USING GIBBS SAMPLING [J].
ALBERT, JH .
JOURNAL OF EDUCATIONAL STATISTICS, 1992, 17 (03) :251-269
[3]  
ANDERSEN EB, 1970, J ROY STAT SOC B, V32, P283
[4]  
[Anonymous], APPL STAT, DOI DOI 10.2307/2347565
[5]  
[Anonymous], 1984, J EDUC STAT, DOI [10.3102/10769986009004263, DOI 10.3102/10769986009004263]
[6]  
Baker F. B., 1992, ITEM RESPONSE THEORY, DOI Marcel Dekker
[7]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
[8]   STATISTICAL THEORY FOR LOGISTIC MENTAL TEST MODELS WITH A PRIOR DISTRIBUTION OF ABILITY [J].
BIRNBAUM, A .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1969, 6 (02) :258-&
[9]  
BOCK RD, 1970, PSYCHOMETRIKA, V35, P179
[10]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25