Diffeomorphic approximation of planar Sobolev homeomorphisms in Orlicz Sobolev spaces

被引:10
作者
Campbell, Daniel [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Homeomorphisms; Approximation; Sobolev-Orlicz spaces; PIECEWISE AFFINE HOMEOMORPHISMS;
D O I
10.1016/j.jfa.2017.03.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of R-2 be a domain, let Phi be a Delta(2) Young function and let f is an element of W-1,W-Phi(Omega, R-2) be a homeomorphism between Omega and f(Omega). Then there exists a sequence of diffeomorphisms f(k) converging to f in the Sobolev-Orlicz space W-1,W-Phi(Omega, R-2). Further for an injective continuous map phi is an element of W-1,W-Phi (partial derivative(-1,1)(2), R-2) we find a diffeomorphism in W-1,W-Phi((-1,1)(2), R-2) that equals phi on the boundary. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 205
页数:81
相关论文
共 19 条
[1]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[2]  
[Anonymous], PREPRINT
[3]  
Ball JM, 2010, CISM COUR L, V516, P1
[4]   DISCONTINUOUS EQUILIBRIUM SOLUTIONS AND CAVITATION IN NON-LINEAR ELASTICITY [J].
BALL, JM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 306 (1496) :557-611
[5]  
Ball JM, 2001, LOND MATH S, V284, P1
[6]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[7]  
Bellido JC, 2011, HOUSTON J MATH, V37, P449
[8]  
Charles B., 1952, PAC J MATH, V2, P25, DOI DOI 10.2140/PJM.1952.2.25)
[9]  
Gehring FW., 1959, Ann. Acad. Sci. Fenn. Ser. A I, V272, P1
[10]  
Hencl S, 2014, LECT NOTES MATH, V2096, P1, DOI 10.1007/978-3-319-03173-6