Surfactant-Assisted Synthesis of Palladium Nanosheets and Nanochains for the Electrooxidation of Ethanol

被引:56
作者
Yang, Min [1 ]
Pang, Mingyuan [1 ]
Chen, Jianyu [1 ]
Gao, Fahui [1 ]
Li, Hongliang [1 ]
Guo, Peizhi [1 ]
机构
[1] Qingdao Univ, Coll Mat Sci & Engn, Inst Mat Energy & Environm, State Key Lab Biofibers & Ecotext, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
palladium; assembly; nanosheet; electrocatalysis; ethanol electrooxidation;
D O I
10.1021/acsami.0c20146
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The synthesis of metal nanometer electrocatalysts with a two-dimensional (2D) structure or rich active sites has become a research hotspot in electrocatalysis. In this work, surfactant hexadecyltrimethylammonium bromide (CTAB) was used to assist the synthesis and assembly of Pd ultrathin nanosheet with the help of Mo(CO)(6) in the start system. Pd nanochain composed of nanoparticles is obtained under the same condition, replacing CTAB with carrageenan only. Electrochemical measurements showed that the catalytic peak current density for the electrooxidation of ethanol can reach 2145 mA mg(-1) for the Pd nanosheet assembly (NSA) and 1696 mA mg(-1) for Pd nanochains. Pd nanosheet assembly also has a lower electron-transfer barrier, better catalytic stability, and antipoisoning performance than that of Pd nanochains. The mechanism of Pd nanosheets and nanochains catalysts the enhanced electrocatalytic activity toward ethanol oxidation has been discussed based on the experimental data.
引用
收藏
页码:9830 / 9837
页数:8
相关论文
共 44 条
[1]  
ACS, ACS APPL MATER INTER
[2]   Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation [J].
Bao, Yufei ;
Liu, Hui ;
Liu, Zong ;
Wang, Fulong ;
Feng, Ligang .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 274
[3]   Palladium-Based Nanomaterials: Synthesis and Electrochemical Applications [J].
Chen, Aicheng ;
Ostrom, Cassandra .
CHEMICAL REVIEWS, 2015, 115 (21) :11999-12044
[4]   Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces [J].
Chen, Chen ;
Kang, Yijin ;
Huo, Ziyang ;
Zhu, Zhongwei ;
Huang, Wenyu ;
Xin, Huolin L. ;
Snyder, Joshua D. ;
Li, Dongguo ;
Herron, Jeffrey A. ;
Mavrikakis, Manos ;
Chi, Miaofang ;
More, Karren L. ;
Li, Yadong ;
Markovic, Nenad M. ;
Somorjai, Gabor A. ;
Yang, Peidong ;
Stamenkovic, Vojislav R. .
SCIENCE, 2014, 343 (6177) :1339-1343
[5]  
Deng DH, 2016, NAT NANOTECHNOL, V11, P218, DOI [10.1038/NNANO.2015.340, 10.1038/nnano.2015.340]
[6]   Three-Dimensional Engineering of Nanoparticles To Fabricate a Pd-Au Aerogel as an Advanced Supportless Electrocatalyst for Low-Temperature Direct Ethanol Fuel Cells [J].
Douk, Abdollatif Shafaei ;
Saravani, Hamideh ;
Abad, Mehdi Zareie Yazdan ;
Noroozifar, Meissam .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (08) :7527-7534
[7]   Controlled organization of building blocks to prepare three-dimensional architecture of Pd-Ag aerogel as a high active electrocatalyst toward formic acid oxidation [J].
Douk, Abdollatif Shafaei ;
Saravani, Hamideh ;
Abad, Mehdi Zareie Yazdan ;
Noroozifar, Meissam .
COMPOSITES PART B-ENGINEERING, 2019, 172 :309-315
[8]   Three-dimensional assembly of building blocks for the fabrication of Pd aerogel as a high performance electrocatalyst toward ethanol oxidation [J].
Douk, Abdollatif Shafaei ;
Saravani, Hamideh ;
Noroozifar, Meissam .
ELECTROCHIMICA ACTA, 2018, 275 :182-191
[9]   Palladium-Tin Alloyed Catalysts for the Ethanol Oxidation Reaction in an Alkaline Medium [J].
Du, Wenxin ;
Mackenzie, Kayla E. ;
Milano, Daniel F. ;
Deskins, N. Aaron ;
Su, Dong ;
Teng, Xiaowei .
ACS CATALYSIS, 2012, 2 (02) :287-297
[10]   Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligand-Directed Modulation [J].
Fan, Xuelin ;
Zerebecki, Swen ;
Du, Ran ;
Huebner, Rene ;
Marzum, Galina ;
Jiang, Guocan ;
Hu, Yue ;
Barcikowki, Stephan ;
Reichenberger, Sven ;
Eychmueller, Alexander .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (14) :5706-5711