Some characterizations based on entropy of order statistics and record values

被引:45
作者
Baratpour, S. [1 ]
Ahmadi, J. [1 ]
Arghami, N. R. [1 ]
机构
[1] Ferdowsi Univ Mashhad, Sch Math Sci, Mashhad, Iran
关键词
hazard rate function; Laguerre polynomial; minimal repair; Minkowski inequality; orthonormal system; reversed hazard rate function; series (parallel) system;
D O I
10.1080/03610920600966530
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the literature of information theory, Shannon entropy plays an important role and in the context of reliability theory, order statistics and record values are used for statistical modeling. The aim of this article is characterizing the parent distributions based on Shannon entropy of order statistics and record values. It is shown that the equality of the Shannon information in order statistics or record values can determine uniquely the parent distribution. The exponential distribution is characterized through maximizing Shannon entropy of record values under some constraints. The results are useful in the modeling problems.
引用
收藏
页码:47 / 57
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 1965, 1 COURSE FUNCTIONAL
[2]  
Arnold B.C., 1998, RECORDS
[3]  
Arnold B. C., 1998, A First Course in Order Statistics
[4]   Residual entropy and its characterizations in terms of hazard function and mean residual life function [J].
Asadi, M ;
Ebrahimi, N .
STATISTICS & PROBABILITY LETTERS, 2000, 49 (03) :263-269
[5]  
BARATPOUR S, 2007, IN PRESS STAT PAP
[6]  
Burkinshaw, 1981, PRINCIPLES REAL ANAL
[7]   Information properties of order statistics and spacings [J].
Ebrahimi, N ;
Soofi, ES ;
Zahedi, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (01) :177-183
[8]  
EBRAHIMI N, 2000, SANKHYA A, V66, P236
[9]   Characterization of hazard function factorization by Fisher information in minima and upper record values [J].
Hofmann, G ;
Balakrishnan, N ;
Ahmadi, W .
STATISTICS & PROBABILITY LETTERS, 2005, 72 (01) :51-57
[10]  
Kagan A. M., 1973, Characterization problems in mathematical statistics