Two chain rules for divided differences and Faa di Bruno's formula

被引:20
作者
Floater, Michael S. [1 ]
Lyche, Tom [1 ]
机构
[1] Univ Oslo, Dept Informat, Ctr Math Applicat, N-0316 Oslo, Norway
关键词
chain rule; divided differences; Faa di Bruno's formula;
D O I
10.1090/S0025-5718-06-01916-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive two formulas for divided differences of a function of a function. Both formulas lead to other divided difference formulas, such as reciprocal and quotient rules. The two formulas can also be used to derive Faa di Bruno's formula and other formulas for higher derivatives of composite functions. We also derive a divided difference version of Faa di Bruno's determinant formula.
引用
收藏
页码:867 / 877
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 1857, J PURE APPL MATH
[2]  
[Anonymous], 1927, Interpolation
[3]  
de Boor Carl, 2005, Surveys in Approximation Theory, V1, P46
[4]  
DYN N, 1988, NUMER MATH, V54, P319, DOI 10.1007/BF01396765
[5]   Arc length estimation and the convergence of polynomial curve interpolation [J].
Floater, MS .
BIT NUMERICAL MATHEMATICS, 2005, 45 (04) :679-694
[6]   PROPERTIES OF BETA-SPLINES [J].
GOODMAN, TNT .
JOURNAL OF APPROXIMATION THEORY, 1985, 44 (02) :132-153
[7]  
Gregory J. A., 1989, Mathematical Methods in Computer Aided Geometric Design, P353
[8]  
ISAACSON E, 1966, ANAL NUMERICAL METHO, DOI UNSP MR0201039
[9]   The curious history of Faa di Bruno's formula [J].
Johnson, WP .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (03) :217-234
[10]  
JORDAN C, 1947, CALCULUS FINITE DIFF, DOI UNSP MR0183987