Conditionally exactly solvable problems and non-linear algebras

被引:68
作者
Junker, G [1 ]
Roy, P [1 ]
机构
[1] INDIAN STAT INST,PHYS & APPL MATH UNIT,CALCUTTA 700035,W BENGAL,INDIA
关键词
D O I
10.1016/S0375-9601(97)00422-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using ideas of supersymmetric quantum mechanics we construct a class of conditionally exactly solvable potentials which are supersymmetric partners of the linear and radial harmonic oscillator. Furthermore we show that this class of problems possesses some symmetry structures which belong to non-linear algebras. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:155 / 161
页数:7
相关论文
共 19 条
[1]   CHANGES IN POTENTIALS DUE TO CHANGES IN THE POINT SPECTRUM - ANHARMONIC-OSCILLATORS WITH EXACT-SOLUTIONS [J].
ABRAHAM, PB ;
MOSES, HE .
PHYSICAL REVIEW A, 1980, 22 (04) :1333-1340
[2]  
Cooper F., 1995, Physics Reports, V251, P267, DOI 10.1016/0370-1573(94)00080-M
[3]  
DEBOER J, 1995, PHYS REP, V272, P139
[4]   CONDITIONALLY EXACTLY SOLUBLE CLASS OF QUANTUM POTENTIALS [J].
DUTRA, AD .
PHYSICAL REVIEW A, 1993, 47 (04) :R2435-R2437
[5]   NEW CLASS OF CONDITIONALLY EXACTLY SOLVABLE POTENTIALS IN QUANTUM-MECHANICS [J].
DUTT, R ;
KHARE, A ;
VARSHNI, YP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (03) :L107-L113
[6]  
Flugge S., 1974, Practical Quantum Mechanics
[7]   DYNAMIC SYMMETRY OF ANISOTROPIC SINGULAR OSCILLATOR [J].
GALBERT, OF ;
GRANOVSKII, YI ;
ZHEDANOV, AS .
PHYSICS LETTERS A, 1991, 153 (4-5) :177-180
[8]   QUADRATIC ALGEBRA AS A HIDDEN SYMMETRY OF THE HARTMANN POTENTIAL [J].
GRANOVSKII, YI ;
ZHEDANOV, AS ;
LUTZENKO, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16) :3887-3894
[9]   MUTUAL INTEGRABILITY, QUADRATIC ALGEBRAS, AND DYNAMIC SYMMETRY [J].
GRANOVSKII, YI ;
LUTZENKO, IM ;
ZHEDANOV, AS .
ANNALS OF PHYSICS, 1992, 217 (01) :1-20
[10]   DYNAMICAL SYMMETRIES IN A SPHERICAL GEOMETRY-I [J].
HIGGS, PW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (03) :309-323