Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms

被引:44
作者
Qian, Chao [1 ]
Yu, Yang [1 ]
Tang, Ke [2 ]
Yao, Xin [2 ]
Zhou, Zhi-Hua [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen Key Lab Computat Intelligence, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
基金
国家重点研发计划;
关键词
Evolutionary algorithms; Submodular optimization; Multi-objective evolutionary algorithms; Running time analysis; Computational complexity; EXPECTED RUNTIMES; SEARCH; COMPLEXITY;
D O I
10.1016/j.artint.2019.06.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. During the past two decades, promising results on the running time analysis (one essential theoretical aspect) of EAs have been obtained, while most of them focused on isolated combinatorial optimization problems, which do not reflect the general-purpose nature of EAs. To provide a general theoretical explanation of the behavior of EAs, it is desirable to study their performance on general classes of combinatorial optimization problems. To the best of our knowledge, the only result towards this direction is the provably good approximation guarantees of EAs for the problem class of maximizing monotone submodular functions with matroid constraints. The aim of this work is to contribute to this line of research. Considering that many combinatorial optimization problems involve non-monotone or non-submodular objective functions, we study the general problem classes, maximizing submodular functions with/without a size constraint and maximizing monotone approximately submodular functions with a size constraint. We prove that a simple multi-objective EA called GSEMO-C can generally achieve good approximation guarantees in polynomial expected running time. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:279 / 294
页数:16
相关论文
共 50 条
[31]   Robustness in multi-objective optimization using evolutionary algorithms [J].
A. Gaspar-Cunha ;
J. A. Covas .
Computational Optimization and Applications, 2008, 39 :75-96
[32]   General framework for localised multi-objective evolutionary algorithms [J].
Wang, Rui ;
Fleming, Peter J. ;
Purshouse, Robin C. .
INFORMATION SCIENCES, 2014, 258 :29-53
[33]   MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS' PERFORMANCE IN A SUPPORT ROLE [J].
Woodruff, Matthew J. ;
Simpson, Timothy W. ;
Reed, Patrick M. .
INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 2B, 2016,
[34]   Robustness in multi-objective optimization using evolutionary algorithms [J].
Gaspar-Cunha, A. ;
Covas, J. A. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 39 (01) :75-96
[35]   On the use of multi-objective evolutionary algorithms for survival analysis [J].
Setzkorn, Christian ;
Taktak, Azzam F. G. ;
Damato, Bertil E. .
BIOSYSTEMS, 2007, 87 (01) :31-48
[36]   Parallel Multi-Objective Evolutionary Algorithms: A Comprehensive Survey [J].
Falcon-Cardona, Jesus Guillermo ;
Gomez, Raquel Hernandez ;
Coello, Carlos A. Coello ;
Tapia, Ma. Guadalupe Castillo .
SWARM AND EVOLUTIONARY COMPUTATION, 2021, 67
[37]   A stopping criterion for multi-objective optimization evolutionary algorithms [J].
Marti, Luis ;
Garcia, Jesus ;
Berlanga, Antonio ;
Molina, Jose M. .
INFORMATION SCIENCES, 2016, 367 :700-718
[38]   Aesthetic Design Using Multi-Objective Evolutionary Algorithms [J].
Gaspar-Cunha, Antonio ;
Loyens, Dirk ;
van Hattum, Ferrie .
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 :374-+
[39]   Multi-objective evolutionary algorithms for a reliability location problem [J].
Alcaraz, Javier ;
Landete, Mercedes ;
Monge, Juan F. ;
Sainz-Pardo, Jose L. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 283 (01) :83-93
[40]   Unassisted thresholding based on multi-objective evolutionary algorithms [J].
Hinojosa, Salvador ;
Avalos, Omar ;
Oliva, Diego ;
Cuevas, Erik ;
Pajares, Gonzalo ;
Zaldivar, Daniel ;
Galvez, Jorge .
KNOWLEDGE-BASED SYSTEMS, 2018, 159 :221-232