Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach

被引:103
|
作者
Srivastava, Neha [1 ]
Srivastava, Manish [2 ]
Malhotra, Bansi D. [3 ]
Gupta, Vijai K. [4 ]
Ramteke, P. W. [5 ]
Silva, Roberto N. [6 ]
Shukla, Pratyoosh [7 ]
Dubey, Kashyap Kumar [8 ]
Mishra, P. K. [1 ]
机构
[1] Banaras Hindu Univ, Dept Chem Engn & Technol, Indian Inst Technol, Varanasi 221005, Uttar Pradesh, India
[2] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
[3] Delhi Technol Univ, NanoBioelect Lab, Dept Biotechnol, Main Bawana Rd, Delhi 110042, India
[4] Tallinn Univ Technol, ERA Chair Green Chem, Dept Chem & Biotechnol, EE-12618 Tallinn, Estonia
[5] Sam Higginbottom Univ Agr Technol & Sci, Dept Biol Sci, Allahabad 221007, Uttar Pradesh, India
[6] Univ Sao Paulo, Dept Biochem & Immunol, Ribeirao Preto Med Sch, Ribeirao Preto, SP, Brazil
[7] Maharshi Dayanand Univ, Enzyme Technol & Prot Bioinformat Lab, Dept Microbiol, Rohtak 124001, Haryana, India
[8] Cent Univ Haryana Mahendergarh, Microbial Proc Dev Lab, Dept Biotechnol, Mahendergarh 123031, India
基金
巴西圣保罗研究基金会;
关键词
Biohydrogen production; Dark fermentation; Lignocellulosic biomass; Cellulolytic enzymes; Nanomaterials; Immobilization; BIO-HYDROGEN PRODUCTION; OXIDE NANOPARTICLES; SUGARCANE BAGASSE; ENTEROBACTER-CLOACAE; NANOCOMPOSITE PLATFORM; BIOETHANOL PRODUCTION; SILVER NANOPARTICLES; NICKEL NANOPARTICLES; COPPER NANOPARTICLES; CRUDE CELLULASE;
D O I
10.1016/j.biotechadv.2019.04.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The insights of nanotechnology for cellulosic biohydrogen production through dark fermentation are reviewed. Lignocellulosic biomass to sugar generation is a complex process and covers the most expensive part of cellulose to sugar production technology. In this context, the impacts of nanomaterial on lignocellulosic biomass to biohydrogen production process have been reviewed. In addition, the feasibility of nanomaterials for implementation in each step of the cellulosic biohydrogen production is discussed for economic viability of the process. Numerous aspects such as possible replacement of chemical pretreatment method using nanostructured materials, use of immobilized enzyme for a fast rate of reaction and its reusability along with long viability of microbial cells and hydrogenase enzyme for improving the productivity are the highlights of this review. It is found that various types of nanostructured materials e.g. metallic nanoparticles (Fe degrees, Ni, Cu, Au, Pd, Au), metal oxide nanoparticles (Fe2O3, F3O4, NiCo2O4, CuO, NiO, CoO, ZnO), nanocomposites (Si@CoFe2O4, Fe3O4/alginate) and graphene-based nanomaterials can influence different parameters of the process and therefore may perhaps be utilized for cellulosic biohydrogen production. The emphasis has been given on the cost issue and synthesis sustainability of nanomaterials for making the biohydrogen technology cost effective. Finally, recent advancements and feasibility of nanomaterials as the potential solution for improved cellulose conversion to the biohydrogen production process have been discussed, and this is likely to assist in developing an efficient, economical and sustainable biohydrogen production technology.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Optimized model of fermentable sugar production from Napier grass for biohydrogen generation via dark fermentation
    Balakrishnan, Deepanraj
    Manmai, Numchok
    Ponnambalam, Sabarikirishwaran
    Unpaprom, Yuwalee
    Chaichompoo, Chudapak
    Ramaraj, Rameshprabu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (55) : 21152 - 21160
  • [32] Thermophilic dark fermentation of sewage sludge for biohydrogen production - influence of pH
    Senturk, I
    Buyukgungor, H.
    GLOBAL NEST JOURNAL, 2018, 20 (03): : 564 - 571
  • [33] Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp
    Maru, Biniam T.
    Constanti, Magda
    Stchigel, Alberto M.
    Medina, Francesc
    Sueiras, Jesus E.
    BIOTECHNOLOGY PROGRESS, 2013, 29 (01) : 31 - 38
  • [34] Biohydrogen production from dark fermentation of cheese whey: Influence of pH
    De Gioannis, G.
    Friargiu, M.
    Massi, E.
    Muntoni, A.
    Polettini, A.
    Pomi, R.
    Spiga, D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (36) : 20930 - 20941
  • [35] A Review on Biohydrogen Production Through Dark Fermentation, Process Parameters and Simulation
    Mokhtarani, Babak
    Zanganeh, Jafar
    Moghtaderi, Behdad
    ENERGIES, 2025, 18 (05)
  • [36] Biohydrogen production from carob waste of the Lebanese industry by dark fermentation
    Bahry, Hajar
    Abdallah, Rawa
    Chezeau, Benoit
    Pons, Agnes
    Taha, Samir
    Vial, Christophe
    BIOFUELS-UK, 2022, 13 (02): : 219 - 229
  • [37] Recent insights into biohydrogen production by microalgae - From biophotolysis to dark fermentation
    Nagarajan, Dillirani
    Lee, Duu-Jong
    Kondo, Akihiko
    Chang, Jo-Shu
    BIORESOURCE TECHNOLOGY, 2017, 227 : 373 - 387
  • [38] Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses
    Avcioglu, Sevler Gokce
    Ozgur, Ebru
    Eroglu, Inci
    Yucel, Meral
    Gunduz, Ufuk
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 11360 - 11368
  • [39] Hydroxyapatite Fabrication for Enhancing Biohydrogen Production from Glucose Dark Fermentation
    Mo, Haoe
    Wang, Na
    Ma, Zhongmin
    Zhang, Jishi
    Zhang, Jinlong
    Wang, Lu
    Dong, Weifang
    Zang, Lihua
    ACS OMEGA, 2022, 7 (12): : 10550 - 10558
  • [40] Biohydrogen Production from Sewage Sludge by Sequential Dark and Photo Fermentation
    Zhao, Yuxiao
    Liang, Xiaohui
    Mu, Hui
    Zhang, Xiaodong
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2015, 9 (01) : 95 - 100