Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach

被引:103
|
作者
Srivastava, Neha [1 ]
Srivastava, Manish [2 ]
Malhotra, Bansi D. [3 ]
Gupta, Vijai K. [4 ]
Ramteke, P. W. [5 ]
Silva, Roberto N. [6 ]
Shukla, Pratyoosh [7 ]
Dubey, Kashyap Kumar [8 ]
Mishra, P. K. [1 ]
机构
[1] Banaras Hindu Univ, Dept Chem Engn & Technol, Indian Inst Technol, Varanasi 221005, Uttar Pradesh, India
[2] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
[3] Delhi Technol Univ, NanoBioelect Lab, Dept Biotechnol, Main Bawana Rd, Delhi 110042, India
[4] Tallinn Univ Technol, ERA Chair Green Chem, Dept Chem & Biotechnol, EE-12618 Tallinn, Estonia
[5] Sam Higginbottom Univ Agr Technol & Sci, Dept Biol Sci, Allahabad 221007, Uttar Pradesh, India
[6] Univ Sao Paulo, Dept Biochem & Immunol, Ribeirao Preto Med Sch, Ribeirao Preto, SP, Brazil
[7] Maharshi Dayanand Univ, Enzyme Technol & Prot Bioinformat Lab, Dept Microbiol, Rohtak 124001, Haryana, India
[8] Cent Univ Haryana Mahendergarh, Microbial Proc Dev Lab, Dept Biotechnol, Mahendergarh 123031, India
基金
巴西圣保罗研究基金会;
关键词
Biohydrogen production; Dark fermentation; Lignocellulosic biomass; Cellulolytic enzymes; Nanomaterials; Immobilization; BIO-HYDROGEN PRODUCTION; OXIDE NANOPARTICLES; SUGARCANE BAGASSE; ENTEROBACTER-CLOACAE; NANOCOMPOSITE PLATFORM; BIOETHANOL PRODUCTION; SILVER NANOPARTICLES; NICKEL NANOPARTICLES; COPPER NANOPARTICLES; CRUDE CELLULASE;
D O I
10.1016/j.biotechadv.2019.04.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The insights of nanotechnology for cellulosic biohydrogen production through dark fermentation are reviewed. Lignocellulosic biomass to sugar generation is a complex process and covers the most expensive part of cellulose to sugar production technology. In this context, the impacts of nanomaterial on lignocellulosic biomass to biohydrogen production process have been reviewed. In addition, the feasibility of nanomaterials for implementation in each step of the cellulosic biohydrogen production is discussed for economic viability of the process. Numerous aspects such as possible replacement of chemical pretreatment method using nanostructured materials, use of immobilized enzyme for a fast rate of reaction and its reusability along with long viability of microbial cells and hydrogenase enzyme for improving the productivity are the highlights of this review. It is found that various types of nanostructured materials e.g. metallic nanoparticles (Fe degrees, Ni, Cu, Au, Pd, Au), metal oxide nanoparticles (Fe2O3, F3O4, NiCo2O4, CuO, NiO, CoO, ZnO), nanocomposites (Si@CoFe2O4, Fe3O4/alginate) and graphene-based nanomaterials can influence different parameters of the process and therefore may perhaps be utilized for cellulosic biohydrogen production. The emphasis has been given on the cost issue and synthesis sustainability of nanomaterials for making the biohydrogen technology cost effective. Finally, recent advancements and feasibility of nanomaterials as the potential solution for improved cellulose conversion to the biohydrogen production process have been discussed, and this is likely to assist in developing an efficient, economical and sustainable biohydrogen production technology.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Biohydrogen production from biomass and industrial wastes by dark fermentation
    Chong, Mei-Ling
    Sabaratnam, Vikineswary
    Shirai, Yoshihito
    Hassan, Mohd Ali
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (08) : 3277 - 3287
  • [22] Kinetic Study of Biohydrogen Production Improvement via Dark Fermentation of Sugarcane Molasses by Escherichia marmotae
    Tawfik, Mostafa A.
    Aboseidah, Akram A.
    Heneidak, Samia
    Rasmey, Abdel-Hamied M.
    EGYPTIAN JOURNAL OF BOTANY, 2023, 63 (02): : 551 - 561
  • [23] Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation
    Trad, Zaineb
    Fontaine, Jean-Pierre
    Larroche, Christian
    Vial, Christophe
    RENEWABLE ENERGY, 2016, 98 : 264 - 282
  • [24] Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review
    Lee, Hyung-Sool
    Xin, Wang
    Katakojwala, Ranaprathap
    Mohan, S. Venkata
    Tabish, Noori M. D.
    BIORESOURCE TECHNOLOGY, 2022, 363
  • [25] A novel approach for biohydrogen production
    Kovacs, Kornel L.
    Maroti, Gergely
    Rakhely, Gabor
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (11) : 1460 - 1468
  • [26] The production of biohydrogen by a novel strain Clostridium sp YM1 in dark fermentation process
    Abdeshahian, Peyman
    Al-Shorgani, Najeeb Kaid Nasser
    Salih, Noura K. M.
    Shukor, Hafiza
    Kadier, Abudukeremu
    Hamid, Aidil Abdul
    Kalil, Mohd Sahaid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (24) : 12524 - 12531
  • [27] Challenges for biohydrogen production via direct lignocellulose fermentation
    Levin, David B.
    Carere, Carlo R.
    Cicek, Nazim
    Sparling, Richard
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (17) : 7390 - 7403
  • [28] Fungal solid-state fermentation of food waste for biohydrogen production by dark fermentation
    Manuel, Canto-Robertos
    Carlos, Quintal-Franco
    Carmen, Ponce-Caballero
    Marisela, Vega-De Lille
    Ivan, Moreno-Andrade
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (70) : 30062 - 30073
  • [29] Biohydrogen Production via Dark Fermentation with Pig Manure and Glucose Using pH-Dependent Feeding
    Weide, Tobias
    Hernandez Regalado, Roberto Eloy
    Bruegging, Elmar
    Wichern, Marc
    Wetter, Christof
    CHEMICAL ENGINEERING & TECHNOLOGY, 2020, 43 (08) : 1578 - 1587
  • [30] Palm oil mill effluent (POME) as raw material for biohydrogen and methane production via dark fermentation
    Garritano, Alessandro N.
    Faber, Mariana de Oliveira
    De Sa, Livian R. V.
    Ferreira-Leitao, Viridiana S.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 92 : 676 - 684