Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach

被引:105
作者
Srivastava, Neha [1 ]
Srivastava, Manish [2 ]
Malhotra, Bansi D. [3 ]
Gupta, Vijai K. [4 ]
Ramteke, P. W. [5 ]
Silva, Roberto N. [6 ]
Shukla, Pratyoosh [7 ]
Dubey, Kashyap Kumar [8 ]
Mishra, P. K. [1 ]
机构
[1] Banaras Hindu Univ, Dept Chem Engn & Technol, Indian Inst Technol, Varanasi 221005, Uttar Pradesh, India
[2] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
[3] Delhi Technol Univ, NanoBioelect Lab, Dept Biotechnol, Main Bawana Rd, Delhi 110042, India
[4] Tallinn Univ Technol, ERA Chair Green Chem, Dept Chem & Biotechnol, EE-12618 Tallinn, Estonia
[5] Sam Higginbottom Univ Agr Technol & Sci, Dept Biol Sci, Allahabad 221007, Uttar Pradesh, India
[6] Univ Sao Paulo, Dept Biochem & Immunol, Ribeirao Preto Med Sch, Ribeirao Preto, SP, Brazil
[7] Maharshi Dayanand Univ, Enzyme Technol & Prot Bioinformat Lab, Dept Microbiol, Rohtak 124001, Haryana, India
[8] Cent Univ Haryana Mahendergarh, Microbial Proc Dev Lab, Dept Biotechnol, Mahendergarh 123031, India
基金
巴西圣保罗研究基金会;
关键词
Biohydrogen production; Dark fermentation; Lignocellulosic biomass; Cellulolytic enzymes; Nanomaterials; Immobilization; BIO-HYDROGEN PRODUCTION; OXIDE NANOPARTICLES; SUGARCANE BAGASSE; ENTEROBACTER-CLOACAE; NANOCOMPOSITE PLATFORM; BIOETHANOL PRODUCTION; SILVER NANOPARTICLES; NICKEL NANOPARTICLES; COPPER NANOPARTICLES; CRUDE CELLULASE;
D O I
10.1016/j.biotechadv.2019.04.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The insights of nanotechnology for cellulosic biohydrogen production through dark fermentation are reviewed. Lignocellulosic biomass to sugar generation is a complex process and covers the most expensive part of cellulose to sugar production technology. In this context, the impacts of nanomaterial on lignocellulosic biomass to biohydrogen production process have been reviewed. In addition, the feasibility of nanomaterials for implementation in each step of the cellulosic biohydrogen production is discussed for economic viability of the process. Numerous aspects such as possible replacement of chemical pretreatment method using nanostructured materials, use of immobilized enzyme for a fast rate of reaction and its reusability along with long viability of microbial cells and hydrogenase enzyme for improving the productivity are the highlights of this review. It is found that various types of nanostructured materials e.g. metallic nanoparticles (Fe degrees, Ni, Cu, Au, Pd, Au), metal oxide nanoparticles (Fe2O3, F3O4, NiCo2O4, CuO, NiO, CoO, ZnO), nanocomposites (Si@CoFe2O4, Fe3O4/alginate) and graphene-based nanomaterials can influence different parameters of the process and therefore may perhaps be utilized for cellulosic biohydrogen production. The emphasis has been given on the cost issue and synthesis sustainability of nanomaterials for making the biohydrogen technology cost effective. Finally, recent advancements and feasibility of nanomaterials as the potential solution for improved cellulose conversion to the biohydrogen production process have been discussed, and this is likely to assist in developing an efficient, economical and sustainable biohydrogen production technology.
引用
收藏
页数:13
相关论文
共 156 条
[1]   Molecular Characterization of Trichoderma asperellum and Lignocellulolytic Activity on Barley Straw Treated with Silver Nanoparticles [J].
Abdel-Ghany, Tarek M. ;
Ganash, Magdah ;
Bakri, Marwah M. ;
Al-Rajhi, Aisha M. H. .
BIORESOURCES, 2018, 13 (01) :1729-1744
[2]   Engineered heat treated methanogenic granules: A promising biotechnological approach for extreme thermophilic biohydrogen production [J].
Abreu, Angela A. ;
Alves, Joana I. ;
Pereira, M. Alcina ;
Karakashev, Dimitar ;
Alves, M. Madalena ;
Angelidaki, Irini .
BIORESOURCE TECHNOLOGY, 2010, 101 (24) :9577-9586
[3]  
Alshiyab H., 2008, J. Biol. Sci, V8, P1, DOI DOI 10.3844/OJBSCI.2008.1.9
[4]   Nitrogen sources impact hydrogen production by Escherichia coli using cheese whey as substrate [J].
Alvarado-Cuevas, Zazil D. ;
Ordonez Acevedo, Leandro G. ;
Ornelas Salas, Jose Tomas ;
De Leon-Rodriguez, Antonio .
NEW BIOTECHNOLOGY, 2013, 30 (06) :585-590
[5]   Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes [J].
Andric, Pavle ;
Meyer, Anne S. ;
Jensen, Peter A. ;
Dam-Johansen, Kim .
BIOTECHNOLOGY ADVANCES, 2010, 28 (03) :308-324
[6]   Potential applications of enzymes immobilized on/in nano materials: A review [J].
Ansari, Shakeel Ahmed ;
Husain, Qayyum .
BIOTECHNOLOGY ADVANCES, 2012, 30 (03) :512-523
[7]   Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942 [J].
Asada, Y ;
Koike, Y ;
Schnackenberg, J ;
Miyake, M ;
Uemura, I ;
Miyake, J .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2000, 1490 (03) :269-278
[8]   Biohydrogen production from de-oiled rice bran as sustainable feedstock in fermentative process [J].
Azman, Nadia Farhana ;
Abdeshahian, Peyman ;
Kadier, Abudukeremu ;
Al-Shorgani, Najeeb Kaid Nasser ;
Salih, Noura K. M. ;
Lananan, Izzati ;
Hamid, Aidil Abdul ;
Kalil, Mohd Sahaid .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (01) :145-156
[9]   Immobilized biofilm used as seeding source in batch biohydrogen fermentation [J].
Bai, Ming-Der ;
Chao, Yu-Chieh ;
Lin, Yun-Huin ;
Lu, Wen-Chang ;
Lee, Hom-Ti .
RENEWABLE ENERGY, 2009, 34 (08) :1969-1972
[10]  
Bajaj K. B., 2014, J MAT ENV SCI, V5, P1454