Rapid prediction of NMR spectral properties with quantified uncertainty

被引:77
作者
Jonas, Eric [1 ]
Kuhn, Stefan [2 ]
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[2] Sch Comp Sci & Informat, Leicester, Leics, England
关键词
NMR; Machine learning; DFT; H-1;
D O I
10.1186/s13321-019-0374-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate calculation of specific spectral properties for NMR is an important step for molecular structure elucidation. Here we report the development of a novel machine learning technique for accurately predicting chemical shifts of both H-1 and C-13 nuclei which exceeds DFT-accessible accuracy for C-13 and H-1 for a subset of nuclei, while being orders of magnitude more performant. Our method produces estimates of uncertainty, allowing for robust and confident predictions, and suggests future avenues for improved performance.
引用
收藏
页数:7
相关论文
共 14 条
[1]   Responding to the challenges presented by global megatrends [J].
Batt, P. J. .
INTERNATIONAL SYMPOSIA ON TROPICAL AND TEMPERATE HORTICULTURE - ISTTH2016, 2018, 1205 :1-12
[2]  
BREMSER W, 1978, ANAL CHIM ACTA-COMP, V2, P355
[3]   Machine learning molecular dynamics for the simulation of infrared spectra [J].
Gastegger, Michael ;
Behler, Joerg ;
Marquetand, Philipp .
CHEMICAL SCIENCE, 2017, 8 (10) :6924-6935
[4]  
Kipf TN, 2016, SEMISUPERVISED CLASS, DOI [10.1051/0004-6361/201527329, DOI 10.1051/0004-6361/201527329]
[5]   Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2-a free in-house NMR database with integrated LIMS for academic service laboratories [J].
Kuhn, Stefan ;
Schloerer, Nils E. .
MAGNETIC RESONANCE IN CHEMISTRY, 2015, 53 (08) :582-589
[6]   Enhancing NMR Prediction for Organic Compounds Using Molecular Dynamics [J].
Kwan, Eugene E. ;
Liu, Richard Y. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (11) :5083-5089
[7]  
Landrum G, 2006, RDKIT OPEN SOURCE CH, DOI DOI 10.2307/3592822
[8]  
Li Y., 2017, ARXIV170302914
[9]   Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry [J].
Lodewyk, Michael W. ;
Siebert, Matthew R. ;
Tantillo, Dean J. .
CHEMICAL REVIEWS, 2012, 112 (03) :1839-1862
[10]   Chemical shifts in molecular solids by machine learning [J].
Paruzzo, Federico M. ;
Hofstetter, Albert ;
Musil, Felix ;
De, Sandip ;
Ceriotti, Michele ;
Emsley, Lyndon .
NATURE COMMUNICATIONS, 2018, 9