On the invariant polynomials of Jordan products

被引:0
作者
Martins, EA
Silva, FC
机构
[1] Univ Lisbon, Fac Ciencias, Dept Matemat, P-1749016 Lisbon, Portugal
[2] Univ Aveiro, Dept Matemat, P-3810193 Aveiro, Portugal
关键词
invariant polynomials; Jordan products;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be an algebraically closed field. This paper describes the possible numbers of nonconstant invariant polynomials of the Jordan product XA + AX, when A is fixed and X varies. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:173 / 189
页数:17
相关论文
共 11 条
  • [1] MATRICES WITH PRESCRIBED SUBMATRICES AND NUMBER OF INVARIANT POLYNOMIALS
    CABRAL, I
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 219 : 207 - 224
  • [2] Guralnick R., 1983, Linear Multilinear Algebra, V13, P167, DOI [10.1080/03081088308817514, DOI 10.1080/03081088308817514]
  • [3] LAFFEY TJ, 1980, LINEAR MULTILINEAR A, V8, P183
  • [4] On the number of invariant polynomials of matrix commutators
    Martins, EA
    Silva, FC
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 262 : 179 - 188
  • [5] Martins EA., 1995, Linear Multilinear Algebra, V39, P375, DOI [10.1080/03081089508818408, DOI 10.1080/03081089508818408]
  • [6] On the recognition and rigidity problems for sums of matrices
    Neto, O
    Silva, FC
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 293 (1-3) : 73 - 84
  • [7] Oliveira GN, 1977, LINEAR MULTILINEAR A, V5, P119
  • [8] SA EM, 1989, PORT MATH, V46, P177
  • [9] Silva F., 1988, LINEAR MULTILINEAR A, V24, P51
  • [10] SILVA FC, 1996, LINEAR MULTILINEAR A, V41, P289