Centroaffine Translation Surfaces in R3

被引:0
作者
Yang, Yun [1 ]
Yu, Yanhua [1 ]
Liu, Huili [1 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Peoples R China
关键词
Centroaffine differential geometry; translation surface; Gauss curvature; Pick invariant;
D O I
10.1007/s00025-009-0385-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The centroaffine theorema egregium chi = J - n/n-1G(T,T) + 1 is a fundamental scalar identity in the centroaffine differential geometry for non-degenerate hypersurface immersions. Here n is the dimension of the hypersurface, chi the normalized scalar curvature of the centroaffine metric G, J the Pick invariant and T the centroaffine Tchebychev vector field. In this paper we study non-degenerate centroaffine translation surfaces in affine 3-space R-3 where one of the three summands in the centroaffine theorema egregium is constant, and then give the classifications by solving certain partial differential equations.
引用
收藏
页码:197 / 210
页数:14
相关论文
共 17 条
  • [1] [Anonymous], J GEOM
  • [2] [Anonymous], 1994, Affine Differential Geometry
  • [3] BINDER T, 2004, J GEOM, V79, P31
  • [4] Relative Tchebychev hypersurfaces which are also translation hypersurfaces
    Binder, Thomas
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (01) : 97 - 110
  • [5] LEE IC, 2001, J GEOM, V70, P85
  • [6] Li A. M., 1993, Global Affine Differential Geometry of Hypersurfaces
  • [7] Li A-M., 1991, RESULTS MATH, V20, P660
  • [8] Centroaffine Bernstein problems
    Li, AM
    Li, HH
    Simon, U
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 20 (03) : 331 - 356
  • [9] Liu H., 1995, RESULTS MATH, V27, P77, DOI DOI 10.1007/BF03322271
  • [10] Liu H.L, 1996, B BELG MATH SOC, V3, P577