A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel

被引:22
作者
Bjoerkman, Kajsa [1 ]
Jalkanen, Sirpa [2 ,3 ]
Salmi, Marko [2 ,3 ]
Mustonen, Harri [1 ]
Kaprio, Tuomas [1 ]
Kekki, Henna [4 ]
Pettersson, Kim [4 ]
Boeckelman, Camilla [1 ,5 ,6 ]
Haglund, Caj [1 ,5 ,6 ]
机构
[1] Univ Helsinki, Translat Canc Med, Res Programs Unit, Meilahti Hosp, Haartmaninkatu 4,POB 340, Hus Helsinki 00029, Finland
[2] Univ Turku, MediC Res Lab, Turku, Finland
[3] Univ Turku, Inst Biomed, Turku, Finland
[4] Univ Turku, Dept Biochem, Turku, Finland
[5] Univ Helsinki, Dept Surg, Helsinki, Finland
[6] Helsinki Univ Hosp, Helsinki, Finland
关键词
POPULATION; SURVIVAL; PREDICT; STAGE;
D O I
10.1038/s41598-020-80785-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mortality in colorectal cancer (CRC) remains high, resulting in 860,000 deaths annually. Carcinoembryonic antigen is widely used in clinics for CRC patient follow-up, despite carrying a limited prognostic value. Thus, an obvious need exists for multivariate prognostic models. We analyzed 48 biomarkers using a multiplex immunoassay panel in preoperative serum samples from 328 CRC patients who underwent surgery at Helsinki University Hospital between 1998 and 2003. We performed a multivariate prognostic forward-stepping background model based on basic clinicopathological data, and a multivariate machine-learned prognostic model based on clinicopathological data and biomarker variables, calculating the disease-free survival using the value of importance score. From the 48 analyzed biomarkers, only IL-8 emerged as a significant prognostic factor for CRC patients in univariate analysis (HR 4.88; 95% CI 2.00-11.92; p = 0.024) after correcting for multiple comparisons. We also developed a multivariate model based on all 48 biomarkers using a random survival forest analysis. Variable selection based on a minimal depth and the value of importance yielded two tentative candidate CRC prognostic markers: IL-2Ra and IL-8. A multivariate prognostic model using machine-learning technologies improves the prognostic assessment of survival among surgically treated CRC patients.
引用
收藏
页数:9
相关论文
共 27 条
[1]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[2]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[3]   Predicting systemic spread in early colorectal cancer: Can we do better? [J].
Brockmoeller, Scarlet Fiona ;
West, Nicholas Paul .
WORLD JOURNAL OF GASTROENTEROLOGY, 2019, 25 (23) :2887-2897
[4]   Macrophage migration inhibitory factor promotes resistance to MEK blockade in KRAS mutant colorectal cancer cells [J].
Cheon, Seul-Ki ;
Kim, Hwang-Phill ;
Park, Ye-Lim ;
Jang, Jee-Eun ;
Lim, Yoojoo ;
Song, Sang-Hyun ;
Han, Sae-Won ;
Kim, Tae-You .
MOLECULAR ONCOLOGY, 2018, 12 (08) :1398-1409
[5]   Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update [J].
Duffy, M. J. ;
Lamerz, R. ;
Haglund, C. ;
Nicolini, A. ;
Kalousova, M. ;
Holubec, L. ;
Sturgeon, C. .
INTERNATIONAL JOURNAL OF CANCER, 2014, 134 (11) :2513-2522
[6]   Strategy to targeting the immune resistance and novel therapy in colorectal cancer [J].
Gang, Wang ;
Wang, Jun-Jie ;
Guan, Rui ;
Yan, Sun ;
Shi, Feng ;
Zhang, Jia-Yan ;
Li, Zi-Meng ;
Gao, Jing ;
Fu, Xing-Li .
CANCER MEDICINE, 2018, 7 (05) :1578-1603
[7]   Hallmarks of Cancer: The Next Generation [J].
Hanahan, Douglas ;
Weinberg, Robert A. .
CELL, 2011, 144 (05) :646-674
[8]   Single nucleotide polymorphisms in genes MACC1, RAD18, MMP7 and SDF-1a as prognostic factors in resectable colorectal cancer [J].
Horvat, Matej ;
Potocnik, Uros ;
Repnik, Katja ;
Kavalar, Rajko ;
Zadnik, Vesna ;
Potrc, Stojan ;
Stabuc, Borut .
RADIOLOGY AND ONCOLOGY, 2017, 51 (02) :151-159
[9]   Increased C-reactive protein implies a poorer stage-specific prognosis in colon cancer [J].
Kersten, Christian ;
Louhimo, Johanna ;
Algars, Annika ;
Lahdesmaki, Aleksi ;
Cvancerova, Milada ;
Stenstedt, Kristina ;
Haglund, Caj ;
Gunnarsson, Ulf .
ACTA ONCOLOGICA, 2013, 52 (08) :1691-1698
[10]   Performance analysis of a machine learning flagging system used to identify a group of individuals at a high risk for colorectal cancer [J].
Kinar, Yaron ;
Akiva, Pinchas ;
Choman, Eran ;
Kariv, Revital ;
Shalev, Varda ;
Levin, Bernard ;
Narod, Steven A. ;
Goshen, Ran .
PLOS ONE, 2017, 12 (02)