A class of quasi-Newton generalized Steffensen methods on Banach spaces

被引:32
作者
Amat, S
Busquier, S
Candela, V
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartegena, Murcia, Spain
[2] Univ Valencia, Dept Matemat, E-46003 Valencia, Spain
关键词
generalized Steffensen methods; nonlinear equations; Kantarovich conditions;
D O I
10.1016/S0377-0427(02)00484-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of generalized Steffensen iterations procedure for solving nonlinear equations on Banach spaces without any derivative. We establish the convergence under the Kantarovich-Ostrowski's conditions. The majorizing sequence will be a Newton's type sequence, thus the convergence can have better properties. Finally, a numerical comparation with the classical methods is presented. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 4 条
[1]  
BUSQUIER S, 2000, METODOS NUMERICOS AL
[2]   ON THE CONVERGENCE OF A CLASS OF GENERALIZED STEFFENSENS ITERATIVE PROCEDURES AND ERROR ANALYSIS [J].
CHEN, D .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1990, 31 (3-4) :195-203
[3]  
EZQUERRO JA, 1996, THESIS U RIOJA
[4]  
Ortega JM., 1970, ITERATIVE SOLUTION N