Finding roots of polynomials over finite fields

被引:35
作者
Fedorenko, SV [1 ]
Trifonov, PV [1 ]
机构
[1] St Petersburg State Polytech Univ, Dept Distributed Computing & Networking, St Petersburg 194021, Russia
关键词
affine polynomial; Bose-Chaudhuri-Hocquenghem (BCH) code; Chien search; error-locator polynomial; linearized polynomial; p-polynomial; Reed-Solomon code;
D O I
10.1109/TCOMM.2002.805269
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we propose an improved algorithm for finding roots of polynomials over finite fields. This makes possible significant speedup of the decoding process of Bose-Chaudhuri-Hocquenghem, Reed-Solomon, and some other error-correcting codes.
引用
收藏
页码:1709 / 1711
页数:3
相关论文
共 3 条
[1]  
BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
[2]   HYBRID METHODS FOR FINDING ROOTS OF A POLYNOMIAL - WITH APPLICATION TO BCH DECODING [J].
CHIEN, RT ;
CUNNINGHAM, BD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1969, 15 (02) :329-+
[3]   Fast algorithm for computing the roots of error locator polynomials up to degree II in Reed-Solomon decoders [J].
Truong, TK ;
Jeng, JH ;
Reed, IS .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (05) :779-783