Directionally-Unbiased Unitary Optical Devices in Discrete-Time Quantum Walks

被引:7
|
作者
Osawa, Shuto [1 ]
Simon, David S. [1 ,2 ]
Sergienko, Alexander, V [1 ,3 ,4 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, 8 St Marys St, Boston, MA 02215 USA
[2] Stonehill Coll, Dept Phys & Astron, 320 Washington St, Easton, MA 02357 USA
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Boston Univ, Photon Ctr, 8 St Marys St, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
quantum walks; linear optics; quantum information processing; SCATTERING-THEORY; SEARCH; ALGORITHMS; SCHEME;
D O I
10.3390/e21090853
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The optical beam splitter is a widely-used device in photonics-based quantum information processing. Specifically, linear optical networks demand large numbers of beam splitters for unitary matrix realization. This requirement comes from the beam splitter property that a photon cannot go back out of the input ports, which we call "directionally-biased". Because of this property, higher dimensional information processing tasks suffer from rapid device resource growth when beam splitters are used in a feed-forward manner. Directionally-unbiased linear-optical devices have been introduced recently to eliminate the directional bias, greatly reducing the numbers of required beam splitters when implementing complicated tasks. Analysis of some originally directional optical devices and basic principles of their conversion into directionally-unbiased systems form the base of this paper. Photonic quantum walk implementations are investigated as a main application of the use of directionally-unbiased systems. Several quantum walk procedures executed on graph networks constructed using directionally-unbiased nodes are discussed. A significant savings in hardware and other required resources when compared with traditional directionally-biased beam-splitter-based optical networks is demonstrated.
引用
收藏
页数:32
相关论文
共 41 条
  • [41] Alternated two-particle discrete-time quantum walk on arbitrary graphs and its application on graph isomorphism testing
    Li, Panlong
    Li, Dan
    Zhou, Yuqian
    Duan, Bojia
    Yang, Yuguang
    PHYSICA SCRIPTA, 2025, 100 (03)