Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage

被引:68
作者
Ding, Zhengping [1 ]
Zhang, Chunxiao [1 ]
Xu, Sheng [2 ,3 ]
Liu, Jiatu [1 ]
Liang, Chaoping [1 ]
Chen, Libao [1 ]
Wang, Peng [2 ,3 ]
Ivey, Douglas G. [4 ]
Deng, Yida [5 ]
Wei, Weifeng [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[4] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[5] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Li- and Mn-rich layered oxide cathodes; Heteroepitaxial interface; Liquid-solid interfacial reaction; Lithium and oxygen vacancies; Surface segregation; HIGH-CAPACITY; ION BATTERIES; REVERSIBLE CAPACITY; OXYGEN LOSS; SURFACE; MN; ELECTRODES; NI; PARTICIPATION; CHEMISTRY;
D O I
10.1016/j.ensm.2018.12.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium and oxygen activities can have substantial influences on the kinetics of ion and electron transport and the structural integrity of Li-rich layered oxide (LLO) cathodes, since reversible oxygen redox is ascribed to the extra capacity beyond the theoretical capacity from transition metal redox at high voltages. Herein, we demonstrate a liquid-solid interfacial reaction to generate a heteroepitaxial interface with tunable Li/O activities on LLOs using molten boric acid. The experimental and theoretical analyses indicate that the atomic scale interface is comprised of a disordered rock salt structure containing substantial Li/O vacancies along the layered structure, associated with a segregation tendency of Ni and Co. The formation of this heteroepitaxial interface with Li/O vacancies improves the ionic/electronic conduction and electrochemical/structural stability, leading to a high discharge capacity of 283mAh g(-1) with initial Coulombic efficiency of 91.7% (0.1 C, 2.0-4.7 V vs. Li+/Li), excellent rate performance (246 and 159.7mAh g(-1) at 1 C and 10 C, respectively) and enhanced cyclic performance with a capacity retention of 92% after 100 cycles. The findings highlight the importance of a well-engineered interface for the design of high performance layered cathode materials for Li storage.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 63 条
[1]  
[Anonymous], 2001, ELECTROCHEM SOLID ST
[2]  
[Anonymous], ADV ENERGY MAT
[3]   Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2-Li[M]O2 (M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions [J].
Arinkumar, T. A. ;
Wu, Y. ;
Manthiram, A. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3067-3073
[4]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[5]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[6]   Differential Electrochemical Mass Spectrometry Study of the Interface of xLi2MnO3•(1-x)LiMO2 (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries [J].
Castel, Elias ;
Berg, Erik J. ;
El Kazzi, Mario ;
Novak, Petr ;
Villevieille, Claire .
CHEMISTRY OF MATERIALS, 2014, 26 (17) :5051-5057
[7]   Understanding the Enhanced Kinetics of Gradient-Chemical-Doped Lithium-Rich Cathode Material [J].
Ding, Zhengping ;
Xu, Mingquan ;
Liu, Jiatu ;
Huang, Qun ;
Chen, Libao ;
Wang, Peng ;
Ivey, Douglas G. ;
Wei, Weifeng .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (24) :20519-20526
[8]   High-Temperature Treatment of Li-Rich Cathode Materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling [J].
Erickson, Evan M. ;
Sclar, Hadar ;
Schipper, Florian ;
Liu, Jing ;
Tian, Ruiyuan ;
Ghanty, Chandan ;
Burstein, Larisa ;
Leifer, Nicole ;
Grinblat, Judith ;
Talianker, Michael ;
Shin, Ji-Yong ;
Lampert, Jordan K. ;
Markovsky, Boris ;
Frenkel, Anatoly I. ;
Aurbach, Doron .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[9]   Correlation Between Oxygen Vacancy, Microstrain, and Cation Distribution in Lithium-Excess Layered Oxides During the First Electrochemical Cycle [J].
Fell, Christopher R. ;
Qian, Danna ;
Carroll, Kyler J. ;
Chi, Miaofang ;
Jones, Jacob L. ;
Meng, Ying Shirley .
CHEMISTRY OF MATERIALS, 2013, 25 (09) :1621-1629
[10]   Quantifying the promise of lithium-air batteries for electric vehicles [J].
Gallagher, Kevin G. ;
Goebel, Steven ;
Greszler, Thomas ;
Mathias, Mark ;
Oelerich, Wolfgang ;
Eroglu, Damla ;
Srinivasan, Venkat .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1555-1563