Existence of weak solution and semiclassical limit for quantum drift-diffusion model

被引:43
作者
Chen, Li
Ju, Qiangchang
机构
[1] Department of Mathematical Sciences, Tsinghua University, Beijing
[2] Fachbereich Mathematik und Informatik, Johannes Gutenberg-Universitäat, 55099 Mainz
[3] Institute of Applied Physics and Computational Mathematics, Beijing, 100088
[4] Dipartimento di Matematica G. Castelnuovo, Universitá di Roma La Sapienza, I-00185 Roma
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2007年 / 58卷 / 01期
关键词
quantum drift-diffusion; weak solution; semiclassical limit; entropy inequality;
D O I
10.1007/s00033-005-0051-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and semiclassical limit of the solution to one-dimensional transient quantum drift-diffusion model in semiconductor simulation are discussed. Besides the proof of existence of the weak solution, it is also obtained that the semiclassical limit of this solution solves the classical drift-diffusion model. The key estimates rest on the entropy inequalities derived from separation of quantum quasi-Fermi level.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 19 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
[Anonymous], 2002, SEMICONDUCTOR DEVICE
[3]   On the stationary quantum drift-diffusion model [J].
Ben Abdallah, N ;
Unterreiter, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02) :251-275
[4]  
Brennan K. F., 1999, The Physics of Semiconductors: With Applications to Optoelectronic Devices
[5]   Analysis of a multidimensional parabolic population model with strong cross-diffusion [J].
Chen, L ;
Jüngel, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) :301-322
[6]  
DEGOND P, 2004, IN PRESS CONT MATH
[7]  
DOLBEAULT J, 2004, NONLINEAR 4 ORDER PA
[8]   FORM OF THE QUANTUM POTENTIAL FOR USE IN HYDRODYNAMIC EQUATIONS FOR SEMICONDUCTOR-DEVICE MODELING [J].
FERRY, DK ;
ZHOU, JR .
PHYSICAL REVIEW B, 1993, 48 (11) :7944-7950
[9]   THE QUANTUM HYDRODYNAMIC MODEL FOR SEMICONDUCTOR-DEVICES [J].
GARDNER, CL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (02) :409-427
[10]  
GUALDANI M, 2004, NONLINEAR 4 ORDER PA