Entropic bounds as uncertainty measure of unitary operators

被引:2
作者
Shaari, Jesni Shamsul [1 ]
Nasir, Rinie N. M. [1 ]
Mancini, Stefano [2 ,3 ]
机构
[1] Int Islamic Univ Malaysia IIUM, Fac Sci, Jalan Sultan Ahmad Shah, Kuantan 25200, Pahang, Malaysia
[2] Univ Camerino, Sch Sci & Technol, I-62032 Camerino, Italy
[3] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
基金
欧盟地平线“2020”;
关键词
Entropic uncertainty relations; Mutually unbiased unitary bases; Incompatibility;
D O I
10.1016/j.physleta.2021.127277
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We reformulate the notion of uncertainty of pairs of unitary operators within the context of guessing games and derive an entropic uncertainty relation for a pair of such operators. We show how distinguishable operators are compatible while maximal incompatibility of unitary operators can be connected to bases for some subspace of operators which are mutually unbiased. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 18 条
[1]   Uncertainty relations for general unitary operators [J].
Bagchi, Shrobona ;
Pati, Arun Kumar .
PHYSICAL REVIEW A, 2016, 94 (04)
[2]   QUANTUM NETWORKS: GENERAL THEORY AND APPLICATIONS [J].
Bisio, A. ;
Chiribella, G. ;
D'Ariano, G. M. ;
Perinotti, P. .
ACTA PHYSICA SLOVACA, 2011, 61 (03) :273-U120
[3]   Entropic uncertainty relations and their applications [J].
Coles, Patrick J. ;
Berta, Mario ;
Tomamichel, Marco ;
Wehner, Stephanie .
REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
[4]   UNCERTAINTY IN QUANTUM MEASUREMENTS [J].
DEUTSCH, D .
PHYSICAL REVIEW LETTERS, 1983, 50 (09) :631-633
[5]   ON MUTUALLY UNBIASED BASES [J].
Durt, Thomas ;
Englert, Berthold-Georg ;
Bengtsson, Ingemar ;
Zyczkowski, Karol .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (04) :535-640
[6]   NUMERICAL STUDY OF THE INFORMATION UNCERTAINTY PRINCIPLE [J].
GARRETT, AJM ;
GULL, SF .
PHYSICS LETTERS A, 1990, 151 (09) :453-458
[7]   GENERALIZED ENTROPIC UNCERTAINTY RELATIONS [J].
MAASSEN, H ;
UFFINK, JBM .
PHYSICAL REVIEW LETTERS, 1988, 60 (12) :1103-1106
[8]   Uncertainty relation for the discrete fourier transform [J].
Massar, Serge ;
Spindel, Philippe .
PHYSICAL REVIEW LETTERS, 2008, 100 (19)
[9]   On mutually unbiased unitary bases in prime-dimensional Hilbert spaces [J].
Nasir, Rinie N. M. ;
Shaari, Jesni Shamsul ;
Mancini, Stefano .
QUANTUM INFORMATION PROCESSING, 2019, 18 (06)
[10]   Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)-Mo3Si alloys [J].
Parthasarathy, TA ;
Mendiratta, MG ;
Dimiduk, DM .
ACTA MATERIALIA, 2002, 50 (07) :1857-1868