POSITIVE GROUND STATE SOLUTIONS FOR A QUASILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT

被引:29
作者
Deng, Yinbin [1 ]
Huang, Wentao [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
Ground state solutions; quasilinear elliptic equation; critical exponent; NONLINEAR SCHRODINGER-EQUATION; CONCENTRATION-COMPACTNESS PRINCIPLE; SOLITON-SOLUTIONS; CRITICAL GROWTH; R-N; EXISTENCE; PLASMA;
D O I
10.3934/dcds.2017179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following quasilinear elliptic equation with critical Sobolev exponent: -Delta u + V(x)u - [Delta(1 + u(2))(1/2)]u/2(1+u(2))(1/2) = |u|(2*-2)u + |u|(p-2)u, x is an element of R-N, which models the self-channeling of a high-power ultra short laser in matter, where N >= 3, 2 < p < 2* - 2N/N-2 and V(x) is a given positive potential. Combining the change of variables and an abstract result developed by Jeanjean in [14], we obtain the existence of positive ground state solutions for the given problem.
引用
收藏
页码:4213 / 4230
页数:18
相关论文
共 33 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], NO HORTICULTURE, DOI DOI 10.1039/C2IB20121F
[3]  
[Anonymous], 1997, Minimax theorems
[4]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]  
BEZERRA DJM, 2010, J DIFFER EQUATIONS, V248, P722
[7]   RELATIVISTIC AND PONDEROMOTIVE SELF-FOCUSING OF A LASER-BEAM IN A RADIALLY INHOMOGENEOUS-PLASMA .1. PARAXIAL APPROXIMATION [J].
BRANDI, HS ;
MANUS, C ;
MAINFRAY, G ;
LEHNER, T ;
BONNAUD, G .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (10) :3539-3550
[8]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[9]   NECESSARY AND SUFFICIENT CONDITIONS FOR SELF-FOCUSING OF SHORT ULTRAINTENSE LASER-PULSE IN UNDERDENSE PLASMA [J].
CHEN, XL ;
SUDAN, RN .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2082-2085
[10]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226