Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling

被引:111
作者
Guo, Wenze [1 ]
Zhang, Zheng [1 ]
Hacking, Jasper [1 ]
Heeres, Hero Jan [1 ]
Yue, Jun [1 ]
机构
[1] Univ Groningen, Engn & Technol Inst Groningen, Dept Chem Engn, NL-9747 AG Groningen, Netherlands
关键词
Bronsted acid; Fructose; Glucose; 5-hydroxymethylfurfural; Kinetics; Microreactor;
D O I
10.1016/j.cej.2020.128182
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A two-step process combining the (equilibrium) glucose isomerization to fructose with selective dehydration of fructose in the obtained sugar mixture to 5-hydroxymethylfurfural (HMF), where glucose is largely unconverted and recycled, represents an attractive concept to increase the overall efficiency for HMF synthesis. This work presents experimental and modelling studies on the conversion of such fructose-glucose mixture to HMF using the sulfuric acid catalyst in a water-methyl isobutyl ketone biphasic system under a wide range of conditions (e. g., temperature, catalyst and sugar concentrations). Through detailed product analyses and ESI-MS spectroscopy, the excess formation of formic acid (together with humins) by the direct sugar/HMF degradation was confirmed and included in the reaction network (neglected in most literatures). The kinetic modelling based on batch experiments in monophasic water well describes the measurements thereof, whereas distinct deviations were found in the prediction of typical literature kinetic models. The incorporation of HMF equilibrium extraction into the developed kinetic model, with consideration of phase volume change as a function of temperature and partial phase miscibility, enables to predict reaction results in the biphasic system in batch. This kinetic model allows to optimize conditions for HMF synthesis that are favored in continuous reactors with minimized back mixing. Based on the model implications, the biphasic system was optimized with slug flow microreactors to better address process intensification and scale-up aspects. Using a simulated fructose-glucose mixture feedstock to represent commercially available high fructose corn syrups, a maximum HMF yield of 81% was obtained at 155 degrees C over 0.05 M H2SO4 at a residence time of 16 min in the microreactor, with 96% fructose conversion and over 95% of glucose remaining unconverted.
引用
收藏
页数:18
相关论文
共 80 条
[1]   High-Yield 5-Hydroxymethylfurfural Synthesis from Crude Sugar Beet Juice in a Biphasic Microreactor [J].
Abdilla-Santes, Ria M. ;
Guo, Wenze ;
Bruijnincx, Pieter C. A. ;
Yue, Jun ;
Deuss, Peter J. ;
Heeres, Hero J. .
CHEMSUSCHEM, 2019, 12 (18) :4304-4312
[2]   Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: Formation of 5-hydroxymethylfurfural, levulinic, and formic acids [J].
Asghari, Feridoun Salak ;
Yoshida, Hiroyuki .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (23) :7703-7710
[3]   The correlation coefficient:: An overview [J].
Asuero, AG ;
Sayago, A ;
González, AG .
CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2006, 36 (01) :41-59
[4]   THERMOCHEMICAL PRETREATMENT OF LIGNOCELLULOSE TO ENHANCE METHANE FERMENTATION .1. MONOSACCHARIDE AND FURFURALS HYDROTHERMAL DECOMPOSITION AND PRODUCT FORMATION RATES [J].
BAUGH, KD ;
MCCARTY, PL .
BIOTECHNOLOGY AND BIOENGINEERING, 1988, 31 (01) :50-61
[5]   Systematic Identification of Solvents Optimal for the Extraction of 5-Hydroxymethylfurfural from Aqueous Reactive Solutions [J].
Blumenthal, Lena C. ;
Jens, Christian M. ;
Ulbrich, Joern ;
Schwering, Frank ;
Langrehr, Vanessa ;
Turek, Thomas ;
Kunz, Ulrich ;
Leonhard, Kai ;
Palkovits, Regina .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (01) :228-235
[6]   Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing [J].
Brasholz, Malte ;
von Kaenel, Karin ;
Hornung, Christian H. ;
Saubern, Simon ;
Tsanaktsidis, John .
GREEN CHEMISTRY, 2011, 13 (05) :1114-1117
[7]   Kinetic and Mechanistic Study of Glucose Isomerization Using Homogeneous Organic Bronsted Base Catalysts in Water [J].
Carraher, Jack M. ;
Fleitman, Chelsea N. ;
Tessonnier, Jean-Philippe .
ACS CATALYSIS, 2015, 5 (06) :3162-3173
[8]   Biomass into Chemicals: Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts [J].
Casanova, Onofre ;
Iborra, Sara ;
Corma, Avelino .
CHEMSUSCHEM, 2009, 2 (12) :1138-1144
[9]   Kinetics of levulinic acid formation from glucose decomposition at high temperature [J].
Chang Chun ;
Ma Xiaojian ;
Cen Peilin .
CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2006, 14 (05) :708-712
[10]  
Chang HC, 2020, GREEN CHEM, V22, P5285, DOI [10.1039/d0gc01576h, 10.1039/D0GC01576H]