Effect of alternating magnetic field on the removal of metal impurities in silicon ingot by directional solidification

被引:31
作者
Li, Pengting [1 ,2 ]
Ren, Shiqiang [1 ,2 ]
Jiang, Dachuan [1 ,2 ]
Li, Jiayan [1 ,2 ]
Zhang, Lei [3 ]
Tan, Yi [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Mat Sci & Engn, Dalian 116023, Peoples R China
[2] Key Lab Solar Energy Photovolta Syst Liaoning Pro, Dalian 116023, Peoples R China
[3] Xiamen Univ, Coll Mat Sci & Engn, Xiamen 361005, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Directional solidification; Magnetic field; Silicon; Metal impurities; Diffusion layer; MULTICRYSTALLINE SILICON; INTERFACE SHAPE; NUMERICAL SIMULATIONS; MODEL EXPERIMENTS; HEAT-TRANSFER; MELT FLOW; ALUMINUM; CALCIUM;
D O I
10.1016/j.jcrysgro.2015.12.007
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Multicrystalline silicon ingots without and with alternating magnetic field during directional solidification process under industrial system were obtained from metallurgical grade silicon (MG-Si). The concentrations and normalized concentrations of metal impurities in the two silicon ingots were studied. The result shows that the concentrations and normalized concentrations in high-purity area of the silicon with alternating magnetic field are lower than those of the ingot without alternating magnetic field. The transport mechanism for metal atoms in the diffusion layer area has been changed due to the alternating magnetic field. Alternating magnetic field introduces a convection to reduce the thickness of diffusion layer in the molten silicon, which results in a decreased effective segregation coefficients. Enhancing transport driving force of metal atoms in molten silicon is the effective way to improve the removal rate of metal impurities. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:14 / 19
页数:6
相关论文
共 21 条
[1]   MODELING OF DIRECTIONAL SOLIDIFICATION - FROM SCHEIL TO DETAILED NUMERICAL-SIMULATION [J].
BROWN, RA ;
KIM, DH .
JOURNAL OF CRYSTAL GROWTH, 1991, 109 (1-4) :50-65
[2]   DISTRIBUTION OF SOLUTE IN CRYSTALS GROWN FROM THE MELT .2. EXPERIMENTAL [J].
BURTON, JA ;
KOLB, ED ;
SLICHTER, WP ;
STRUTHERS, JD .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (11) :1991-1996
[3]   Directional solidification of silicon under the influence of travelling magnetic field [J].
Cablea, M. ;
Zaidat, K. ;
Gagnoud, A. ;
Nouri, A. ;
Delannoy, Y. .
JOURNAL OF CRYSTAL GROWTH, 2014, 401 :883-887
[4]   Non-isothermal model experiments and numerical simulations for directional solidification of multicrystalline silicon in a traveling magnetic field [J].
Dadzis, K. ;
Niemietz, K. ;
Paetzold, O. ;
Wunderwald, U. ;
Friedrich, J. .
JOURNAL OF CRYSTAL GROWTH, 2013, 372 :145-156
[5]   Unsteady coupled 3D calculations of melt flow, interface shape, and species transport for directional solidification of silicon in a traveling magnetic field [J].
Dadzis, K. ;
Vizman, D. ;
Friedrich, J. .
JOURNAL OF CRYSTAL GROWTH, 2013, 367 :77-87
[6]   Model experiments and numerical simulations for directional solidification of multicrystalline silicon in a traveling magnetic field [J].
Dadzis, K. ;
Ehrig, J. ;
Niemietz, K. ;
Paetzold, O. ;
Wunderwald, U. ;
Friedrich, J. .
JOURNAL OF CRYSTAL GROWTH, 2011, 333 (01) :7-15
[7]   A model for distribution of aluminum in silicon refined by vacuum directional solidification [J].
Huang, Shuping ;
Ma, Wenhui ;
Wei, Kuixian ;
Li, Shaoyuan ;
Morita, Kazuki .
VACUUM, 2013, 96 :12-17
[8]   Evaporated metal aluminium and calcium removal from directionally solidified silicon for solar cell by electron beam candle melting [J].
Jiang, Dachuan ;
Tan, Yi ;
Shi, Shuang ;
Dong, Wei ;
Gu, Zheng ;
Guo, Xiaoliang .
VACUUM, 2012, 86 (10) :1417-1422
[9]   Crystallization of 640 kg mc-silicon ingots under traveling magnetic field by using a heater-magnet module [J].
Kudla, Ch ;
Blumenau, A. T. ;
Buellesfeld, F. ;
Dropka, N. ;
Frank-Rotsch, Ch ;
Kiessling, F. ;
Klein, O. ;
Lange, P. ;
Miller, W. ;
Rehse, U. ;
Sahr, U. ;
Schellhorn, M. ;
Weidemann, G. ;
Ziem, M. ;
Bethin, G. ;
Fornari, R. ;
Mueller, M. ;
Sprekels, J. ;
Trautmann, V. ;
Rudolph, P. .
JOURNAL OF CRYSTAL GROWTH, 2013, 365 :54-58
[10]  
Kvande R, 2008, J APPL PHYS, V104