SCHRODINGER EQUATION WITH MULTIPARTICLE POTENTIAL AND CRITICAL NONLINEARITY

被引:0
作者
Chabrowski, Jan [1 ]
Szulkin, Andrzej [2 ]
Willem, Michel [3 ]
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
[3] Univ Catholique Louvain, Inst Math Pure & Appl, B-1348 Louvain, Belgium
关键词
Schrodinger equation; multiparticle potential; Hardy inequality; ground state; concentration-compactness; ELLIPTIC EQUATION; INEQUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence and non-existence of ground states for the Schrodinger equations -Delta u - lambda Sigma(i<j) u/vertical bar x(i) - x(j)vertical bar(2) = vertical bar u vertical bar(2)* -(2)u, x = (x(1), ... , x(m)) is an element of R-mN, and -Delta u -lambda u/vertical bar y vertical bar(2) = vertical bar u vertical bar(2*) (-2)u, x = (y, z) is an element of R-N. In both cases we assume lambda not equal 0 and lambda < (lambda) over bar, where (lambda) over bar is the Hardy constant corresponding to the problem.
引用
收藏
页码:201 / 211
页数:11
相关论文
共 15 条
[11]   Elliptic problems with critical exponents and Hardy potentials [J].
Ruiz, D ;
Willem, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (02) :524-538
[12]  
SECCHI S, 2003, C R ACAD SCI PARIS 1, V1336, P811
[13]   On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality [J].
Tertikas, A. ;
Tintarev, K. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (04) :645-662
[14]  
WALIULLAH S, TOPOL METHO IN PRESS
[15]  
Willem M., 1997, Minimax theorems