Can ultra-thin Si FinFETs work well in the sub-10 nm gate-length region?

被引:13
|
作者
Liu, Shiqi [1 ,2 ]
Yang, Jie [1 ,2 ]
Xu, Lin [3 ,4 ]
Li, Jingzhen [1 ,2 ]
Yang, Chen [1 ,2 ]
Li, Ying [1 ,2 ]
Shi, Bowen [1 ,2 ]
Pan, Yuanyuan [5 ]
Xu, Linqiang [1 ,2 ]
Ma, Jiachen [1 ,2 ]
Yang, Jinbo [1 ,2 ,6 ,7 ]
Lu, Jing [1 ,2 ,3 ,4 ,6 ,7 ,8 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[3] Peking Univ, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
[4] Peking Univ, Dept Elect, Beijing 100871, Peoples R China
[5] China Univ Petr East China, Coll Chem Engn, Inst New Energy, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[6] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[7] Peking Univ, Beijing Key Lab Magnetoelect Mat & Devices, Beijing 100871, Peoples R China
[8] Peking Univ, Yangtze Delta Inst Optoelect, Nantong 226010, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSISTORS; MOSFET; PERFORMANCE;
D O I
10.1039/d0nr09094h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fin field-effect transistors (FinFETs) dominate the present Si FETs. However, when the gate length is scaled down to the sub-10 nm region, the experimental Si FinFETs suffer from poor performance due to a large fin width (the minimum value is 3 nm). In this paper, an ultra-thin Si FinFET with a width of 0.8 nm is investigated for the first time by utilizing ab initio quantum transport simulations. Remarkably, even with the gate length down to 5 nm, the on-state current, delay time, power dissipation, and energy-delay product of the optimized perfect ultra-thin Si FinFET still meet the high-performance applications' requirements of the International Technology Roadmap for Semiconductors in the next decade. The overall performance of the simulated ultra-thin Si FinFET is even comparable with that of the typical two-dimensional FETs. Such a good performance can be significantly degraded by the defect. Hence, Si FinFETs have the potential to be scaled down to the sub-10 nm gate length as long as the width is scaled down while keeping a perfect structure.
引用
收藏
页码:5536 / 5544
页数:9
相关论文
共 50 条
  • [21] LPCVD deposition techniques for nanograin sub-10nm polysilicon ultra-thin films
    Ecoffey, S
    Bouvet, D
    Ionescu, AM
    Fazan, P
    MATERIALS ISSUES IN NOVEL SI-BASED TECHNOLOGY, 2002, 686 : 167 - 172
  • [22] Electrografting of ultra-thin (sub-10nm) seed layers for advanced copper metallization
    Raynal, Frederic
    Guidotti, Emmanuel
    Gonzalez, Jose
    Roy, Sebastien
    Getin, Stephane
    ADVANCED METALLIZATION CONFERENCE 2006 (AMC 2006), 2007, : 129 - 135
  • [23] Sub-100 nm gate-length SiGe/Si MIS-HFET using Cat-CVD SiN
    Onojima, N.
    Kasamatsu, A.
    Hirose, N.
    Mimura, T.
    Matsui, T.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 9, 2008, 5 (09): : 3150 - 3152
  • [24] Estimation of gate-to-channel tunneling current in ultra-thin oxide sub-50 nm double gate devices
    Mukhopadhyay, Saibal
    Kim, Keunwoo
    Kim, Jae-Joon
    Lo, Shih-Hsien
    Joshi, Rajiv V.
    Chuang, Ching-Te
    Roy, Kaushik
    MICROELECTRONICS JOURNAL, 2007, 38 (8-9) : 931 - 941
  • [25] Electrical characterization of ultra-thin gate oxides on Si/Si1-x-yGexCy/Si quantum well heterostructures
    Maikap, S
    Ray, SK
    John, S
    Banerjee, SK
    Maiti, CK
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2000, 15 (07) : 761 - 765
  • [26] Low leakage, ultra-thin gate oxides for extremely high performance sub-100nm nMOSFETs
    Timp, G
    Agarwal, A
    Baumann, FH
    Boone, T
    Buonanno, M
    Cirelli, R
    Donnelly, V
    Foad, M
    Grant, D
    Green, M
    Gossmann, H
    Hillenius, S
    Jackson, J
    Jacobson, D
    Kleiman, R
    Kornblit, A
    Klemens, F
    Lee, JTC
    Mansfield, W
    Moccio, S
    Murrell, A
    O'Malley, M
    Rosamilia, J
    Sapjeta, J
    Silverman, P
    Sorsch, T
    Tai, WW
    Tennant, D
    Vuong, H
    Weir, B
    INTERNATIONAL ELECTRON DEVICES MEETING - 1997, TECHNICAL DIGEST, 1997, : 930 - 932
  • [27] 20 nm Gate length Schottky MOSFETs with ultra-thin NiSi/epitaxial NiSi2 source/drain
    Knoll, L.
    Zhao, Q. T.
    Luptak, R.
    Trellenkamp, S.
    Bourdelle, K. K.
    Mantl, S.
    SOLID-STATE ELECTRONICS, 2012, 71 : 88 - 92
  • [28] Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length
    Okano, K
    Izumida, T
    Kawasaki, H
    Kaneko, A
    Yagishita, A
    Kanemura, T
    Kondo, M
    Ito, S
    Aoki, N
    Miyano, K
    Ono, T
    Yahashi, K
    Iwade, K
    Kubota, T
    Matsushita, T
    Mizushima, I
    Inaba, S
    Ishimaru, K
    Suguro, K
    Eguchi, K
    Tsunashima, Y
    Ishiuchi, H
    IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2005, TECHNICAL DIGEST, 2005, : 739 - 742
  • [29] A hp22 nm node low operating power (LOP) technology with sub-10 nm gate length planar bulk CMOS devices
    Yasutake, N
    Ohuchi, K
    Fujiwara, M
    Adachi, K
    Hokazono, A
    Kojima, K
    Aoki, N
    Suto, H
    Watanabe, T
    Morooka, T
    Mizuno, H
    Magoshi, S
    Shimizu, T
    Mori, S
    Oguma, H
    Sasaki, T
    Ohmura, M
    Miyano, K
    Yamada, H
    Tomita, H
    Matsushita, D
    Muraoka, K
    Inaba, S
    Takayanagi, M
    Ishimaru, K
    Ishiuchi, H
    2004 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2004, : 84 - 85
  • [30] Low frequency noise assessment in n- and p-channel sub-10 nm triple-gate FinFETs: Part II: Measurements and results
    Boudier, D.
    Cretu, B.
    Simoen, E.
    Carin, R.
    Veloso, A.
    Collaert, N.
    Thean, A.
    SOLID-STATE ELECTRONICS, 2017, 128 : 109 - 114