First-order quantum phase transition in three-dimensional topological band insulators

被引:12
作者
Juricic, Vladimir [1 ,2 ]
Abergel, D. S. L. [1 ,2 ]
Balatsky, A. V. [1 ,2 ,3 ,4 ]
机构
[1] KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[2] Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[3] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA
[4] ETH, ETH Inst Theoret Studies, CH-8092 Zurich, Switzerland
关键词
SINGLE DIRAC CONE; CRYSTALLINE INSULATOR; SURFACE; WELLS; SNTE;
D O I
10.1103/PhysRevB.95.161403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Topological states of matter are characterized by global topological invariants which change their value across a topological quantum phase transition. It is commonly assumed that the transition between topologically distinct noninteracting gapped phases of fermions is necessarily accompanied by the closing of the band gap as long as the symmetries of the system are maintained. We show that such a quantum phase transition is possible without closing the gap in the case of a three-dimensional topological band insulator. We demonstrate this by calculating the free energy of the minimal model for a topological insulator, the Bernevig-Hughes-Zhang model, and show that as the band curvature continuously varies, a jump between the band-gap minima corresponding to the topologically trivial and nontrivial insulators occurs. Therefore, this first-order phase transition is a generic feature of three-dimensional topological band insulators. For a certain parameter range we predict a reentrant topological phase transition. We discuss our findings in connection with the recent experimental observation of a discontinuous topological phase transition in a family of topological crystalline insulators.
引用
收藏
页数:5
相关论文
共 30 条
[1]   Strong correlation effects on topological quantum phase transitions in three dimensions [J].
Amaricci, A. ;
Budich, J. C. ;
Capone, M. ;
Trauzettel, B. ;
Sangiovanni, G. .
PHYSICAL REVIEW B, 2016, 93 (23)
[2]   First-Order Character and Observable Signatures of Topological Quantum Phase Transitions [J].
Amaricci, A. ;
Budich, J. C. ;
Capone, M. ;
Trauzettel, B. ;
Sangiovanni, G. .
PHYSICAL REVIEW LETTERS, 2015, 114 (18)
[3]   Temperature-Induced Topological Phase Transitions: Promoted versus Suppressed Nontrivial Topology [J].
Antonius, Gabriel ;
Louie, Steven G. .
PHYSICAL REVIEW LETTERS, 2016, 117 (24)
[4]  
Assaf B. A., ARXIV160808912
[5]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[6]  
Dziawa P, 2012, NAT MATER, V11, P1023, DOI [10.1038/nmat3449, 10.1038/NMAT3449]
[7]   Topological insulators in three dimensions [J].
Fu, Liang ;
Kane, C. L. ;
Mele, E. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)
[8]   Phonon-Induced Topological Transitions and Crossovers in Dirac Materials [J].
Garate, Ion .
PHYSICAL REVIEW LETTERS, 2013, 110 (04)
[9]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[10]   A topological Dirac insulator in a quantum spin Hall phase [J].
Hsieh, D. ;
Qian, D. ;
Wray, L. ;
Xia, Y. ;
Hor, Y. S. ;
Cava, R. J. ;
Hasan, M. Z. .
NATURE, 2008, 452 (7190) :970-U5