ENERGY AND EXERGY INVESTIGATIONS OF R1234yf AND R1234ze AS R134a REPLACEMENTS IN MECHANICALLY SUBCOOLED VAPOUR COMPRESSION REFRIGERATION CYCLE

被引:8
|
作者
Agarwal, Shyam [1 ]
Arora, Akhilesh [1 ]
Arora, B. B. [1 ]
机构
[1] Delhi Technol Univ, Dept Mech Engn, Delhi 110042, India
来源
JOURNAL OF THERMAL ENGINEERING | 2021年 / 7卷 / 01期
关键词
LVHE; EDR; R1234yf; R1234ze; R134a; Exergetic Efficiency; VCR; COP; HEAT-PUMP SYSTEM; COMMERCIAL REFRIGERATION; THERMODYNAMIC ANALYSIS; PERFORMANCE EVALUATION; GWP REFRIGERANTS; POWER-PLANT; OPTIMIZATION; 2-STAGE;
D O I
10.18186/thermal.846561
中图分类号
O414.1 [热力学];
学科分类号
摘要
The aim of present work is the evaluation of mechanically subcooled simple vapour compression refrigeration system on the basis of energy and exergy analysis, and compatibility of alternative low GWP and zero ODP HFOs R1234yf and R1234ze to replace HFC 134a. A computer program has been developed in Engineering Equation solver software to compute the system performance parameters such as COP, exergetic efficiency, total exergy destruction and exergy destruction ratio. The effect of degree of subcooling (5 to 30 degrees C), evaporator temperature (-30 degrees C to 15 degrees C), effectiveness of liquid vapour heat exchanger (0.2 to 1.0) and compressor efficiency (0.4 to 1.0) has been investigted on the performance parameters viz. exergy desturction, exergy destruction ratio (EDR) and exergetic efficiency of the system components. The results of current analysis highlight that the R1234ze is the best alternate refrigerant considered in the analysis and can replace R134a as the COP and exergetic efficiency of R1234ze are 1.87% and 1.88% more than that of R134a for 30 degrees C of subcoooling. However, R1234yf offers lower performance than R134a. The components condenser and evaporator are the sites of highest and lowest exergy destruction respectively for the refrigerants considered.
引用
收藏
页码:109 / 132
页数:24
相关论文
共 50 条
  • [1] Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration system
    Yataganbaba, Alptug
    Kilicarslan, Ali
    Kurtbas, Irfan
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2015, 60 : 26 - 37
  • [2] Computational energy and exergy analysis of R134a, R1234yf, R1234ze and their mixtures in vapour compression system
    Gaurav
    Kumar, Raj
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 3229 - 3237
  • [3] Performance Analysis of Refrigerants R1234yf, R1234ze and R134a in Ejector-Based Refrigeration Cycle
    Yadav, Ajay Kumar
    Neeraj
    INTERNATIONAL JOURNAL OF AIR-CONDITIONING AND REFRIGERATION, 2018, 26 (03)
  • [4] Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements
    Mota-Babiloni, Adrian
    Navarro-Esbri, Joaquin
    Barragan, Angel
    Moles, Francisco
    Peris, Bernardo
    APPLIED THERMAL ENGINEERING, 2014, 71 (01) : 259 - 265
  • [5] Analysis the characteristics of R1234yf, R1234ze, R134a on reefer container
    Ding, Defeng
    Zhu, Zhenxiang
    Chen, Wu
    Liu, Shijie
    Zheng, Chaoyu
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY RESOURCES AND ENVIRONMENT ENGINEERING (ICAESEE 2019), 2020, 446
  • [6] Performance Evaluation of Centrifugal Refrigeration Compressor Using R1234yf and R1234ze(E) as Drop-In Replacements for R134a Refrigerant
    Yi, Kexin
    Zhao, Yuanyang
    Liu, Guangbin
    Yang, Qichao
    Yu, Guoxin
    Li, Liansheng
    ENERGIES, 2022, 15 (07)
  • [7] R1234yf and R1234ze(E) as environmentally friendly replacements of R134a: Assessing flow boiling on an experimental basis
    Longo, Giovanni A.
    Mancin, Simone
    Righetti, Giulia
    Zilio, Claudio
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2019, 108 : 336 - 346
  • [8] Performance comparison of ejectors in ejector-based refrigeration cycles with R1234yf, R1234ze(E) and R134a
    Shizhen Li
    Yingxin Liu
    Yanjun Liu
    Jingzhi Zhang
    Environmental Science and Pollution Research, 2021, 28 : 57166 - 57182
  • [9] Performance comparison of ejectors in ejector-based refrigeration cycles with R1234yf, R1234ze(E) and R134a
    Li, Shizhen
    Liu, Yingxin
    Liu, Yanjun
    Zhang, Jingzhi
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (40) : 57166 - 57182
  • [10] Energy and exergy analysis of R1234yf using instead of R134a in a vapour compression refrigeration system: an experimental study
    Bilen, Kemal
    Dagidir, Kayhan
    Arcaklioglu, Erol
    Cansevdi, Bekir
    INTERNATIONAL JOURNAL OF EXERGY, 2023, 42 (03) : 315 - 336