The compatibility of theoretical frameworks with machine learning analyses in psychological research

被引:32
作者
Elhai, Jon D. [1 ,2 ]
Montag, Christian [3 ,4 ,5 ]
机构
[1] Univ Toledo, Dept Psychol, 2801 West Bancroft St, Toledo, OH 43606 USA
[2] Univ Toledo, Dept Psychiat, 3000 Arlington Ave, Toledo, OH 43614 USA
[3] Ulm Univ, Inst Psychol & Educ, Dept Mol Psychol, D-89081 Ulm, Germany
[4] Univ Elect Sci & Technol China, Chengdu Brain Sci Inst, Clin Hosp, NeuSCAN Lab, Chengdu, Peoples R China
[5] Univ Elect Sci & Technol China, Key Lab Neuroinformat, Chengdu, Peoples R China
基金
美国国家卫生研究院;
关键词
VARIABLE SELECTION; PERSPECTIVES; PREDICTION; ACCURATE;
D O I
10.1016/j.copsyc.2020.05.002
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Supervised machine learning has been increasingly used in psychology and psychiatry research. Machine learning offers an important advantage over traditional statistical analyses: statistical model training in example data to enhance predictions in external test data. Additional advantages include advanced, improved statistical algorithms, and empirical methods to select a smaller set of predictor variables. Yet machine learning researchers often use large numbers of predictor variables, without using theory to guide variable selection. Such approach leads to Type I error, spurious findings, and decreased generalizability. We discuss the importance of theory to the psychology field. We offer suggestions for using theory to drive variable selection and data analyses using machine learning in psychological research, including an example from the cyberpsychology field.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 53 条
[1]  
Alpaydin E., 2020, Introduction to machine learning
[2]   A Systematic Comparison of Supervised Classifiers [J].
Amancio, Diego Raphael ;
Comin, Cesar Henrique ;
Casanova, Dalcimar ;
Travieso, Gonzalo ;
Bruno, Odemir Martinez ;
Rodrigues, Francisco Aparecido ;
Costa, Luciano da Fontoura .
PLOS ONE, 2014, 9 (04)
[3]  
[Anonymous], 2018, Applied predictive modeling
[4]  
Auer M, INT J MENT HLTH ADDI
[5]   Improving Practices for Selecting a Subset of Important Predictors in Psychology: An Application to Predicting Pain [J].
Bainter, Sierra A. ;
McCauley, Thomas G. ;
Wager, Tor ;
Losin, Elizabeth A. Reynolds .
ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE, 2020, 3 (01) :66-80
[6]   Big Data and Machine Learning in Health Care [J].
Beam, Andrew L. ;
Kohane, Isaac S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13) :1317-1318
[7]   Current Practices in Data Analysis Procedures in Psychology: What Has Changed? [J].
Blanca, Maria J. ;
Alarcon, Rafael ;
Bono, Roser .
FRONTIERS IN PSYCHOLOGY, 2018, 9
[8]   The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors [J].
Brand, Matthias ;
Wegmann, Elisa ;
Stark, Rudolf ;
Mueller, Astrid ;
Woelfling, Klaus ;
Robbins, Trevor W. ;
Potenza, Marc N. .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2019, 104 :1-10
[9]   Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model [J].
Brand, Matthias ;
Young, Kimberly S. ;
Laier, Christian ;
Woelfling, Klaus ;
Potenza, Marc N. .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2016, 71 :252-266
[10]   Feature selection in machine learning: A new perspective [J].
Cai, Jie ;
Luo, Jiawei ;
Wang, Shulin ;
Yang, Sheng .
NEUROCOMPUTING, 2018, 300 :70-79