Many metal oxides exhibit size-dependent phase transitions among multiple polymorphs. In this work, the microstructure and crystallinity of ultrathin HfO2 films and utrathin-wall nanotubes were investigated by high-resolution electron microscopy and electron diffraction after high-temperature annealing. Nanotubes were formed by atomic layer deposition of HfO2 on epitaxial Ge < 111 > nanowire arrays on Si (111) substrates followed by selective etching of the Ge wires. A size-dependent phase transition sequence from amorphous (a-HfO2) to tetragonal (t-HfO2) and from tetragonal to monoclinic (m-HfO2) phase was observed with increasing film and nanotube wall thickness. These results are analyzed in light of recent predictions of surface energy-driven phase transitions in nanoscale fluorite-structure oxides. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3243077]