Modulating the physico-mechanical properties of polyacrylamide/gelatin hydrogels for tissue engineering application

被引:19
作者
Jafari, Arman [1 ]
Hassanajili, Shadi [1 ]
Ghaffari, Farnaz [1 ]
Azarpira, Negar [2 ]
机构
[1] Shiraz Univ, Sch Chem & Petr Engn, Dept Chem Engn, Shiraz 7134851154, Iran
[2] Shiraz Univ Med Sci, Transplant Res Ctr, Shiraz 713451978, Iran
关键词
Polyacrylamide; Gelatin; Hydrogel; Central composite design; Compressive modulus;
D O I
10.1007/s00289-021-03592-2
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Along with providing an environment for cell attachment and proliferation, a tissue engineering scaffolds should possess physical and mechanical properties that would fit the target tissue. The present study aimed to manipulate physico-mechanical properties of polyacrylamide/gelatin hydrogels using response surface method-central composite design (RSM-CCD) to reach a scaffold with defined properties. On this demand, mixtures of gelatin and acrylamide (AAm) monomer were used to prepare semi-interpenetrating hydrogels by free radical polymerization of AAm. Selected variables for statistical modeling were chosen to be weight ratios of monomer/crosslinker, monomer/gelatin, and monomer/initiator. The desired responses were compressive modulus, compressive strength, and swelling. Results showed that desired responses could be tailored by varying these parameters with the highest impact for monomer/crosslinker ratio. The swelling ratio of hydrogels was in the range of 947-1654%, while the modulus varied between 5 and 35 kPa. The cyclic compressive test showed the durability of hydrogels under cyclic loadings. Finally, the results of cell attachment and cytocompatibility analyses indicated that the hydrogels were completely biocompatible and enhanced cell attachment. Thus, these hydrogels could potentially be used as tissue engineering scaffolds for load-bearing organs, including muscle and cartilage, or could be used for in vitro differentiation of stem cells using mechanical clues.
引用
收藏
页码:1821 / 1842
页数:22
相关论文
共 66 条
[1]   Vascularization strategies for skin tissue engineering [J].
Amirsadeghi, Armin ;
Jafari, Arman ;
Eggermont, Loek J. ;
Hashemi, Seyedeh-Sara ;
Bencherif, Sidi A. ;
Khorram, Mohammad .
BIOMATERIALS SCIENCE, 2020, 8 (15) :4073-4094
[2]   Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical [J].
Bajpai, AK ;
Giri, A .
CARBOHYDRATE POLYMERS, 2003, 53 (03) :271-279
[3]   How deeply cells feel: methods for thin gels [J].
Buxboim, Amnon ;
Rajagopal, Karthikan ;
Brown, Andre' E. X. ;
Discher, Dennis E. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (19)
[4]   A practical guide to hydrogels for cell culture [J].
Caliari, Steven R. ;
Burdick, Jason A. .
NATURE METHODS, 2016, 13 (05) :405-414
[5]   Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration [J].
Carvalho, Isadora C. ;
Mansur, Herman S. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 78 :690-705
[6]   Scaffolding in tissue engineering: general approaches and tissue-specific considerations [J].
Chan, B. P. ;
Leong, K. W. .
EUROPEAN SPINE JOURNAL, 2008, 17 (Suppl 4) :S467-S479
[7]  
Chanda M., 2013, Introduction to Polymer Science and Chemistry: A Problem-Solving Approach: SECOND EDITION, DOI DOI 10.1201/B14577
[8]   Advancing biomaterials of human origin for tissue engineering [J].
Chen, Fa-Ming ;
Liu, Xiaohua .
PROGRESS IN POLYMER SCIENCE, 2016, 53 :86-168
[9]   Highly Elastic and Superstretchable Graphene Oxide/Polyacrylamide Hydrogels [J].
Cong, Huai-Ping ;
Wang, Ping ;
Yu, Shu-Hong .
SMALL, 2014, 10 (03) :448-453
[10]   Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry [J].
Davidenko, Natalia ;
Schuster, Carlos F. ;
Bax, Daniel V. ;
Farndale, Richard W. ;
Hamaia, Samir ;
Best, Serena M. ;
Cameron, Ruth E. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2016, 27 (10)