Hodge decomposition of string topology

被引:2
作者
Berest, Yuri [1 ]
Ramadoss, Ajay C. [2 ]
Zhang, Yining [3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[3] Univ Colorado, Dept Math, Boulder, CO 80309 USA
关键词
REPRESENTATION SCHEMES; POISSON STRUCTURES; OPERATIONS; COHOMOLOGY; HOMOLOGY; ALGEBRA;
D O I
10.1017/fms.2021.26
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the S-1-equivariant homology (H) over bar (S1)(*)(LX, Q) of the free loop space of X preserves the Hodge decomposition of (H) over bar (S1)(*)(LX, Q), making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7].
引用
收藏
页数:31
相关论文
共 48 条
  • [1] [Anonymous], 2003, Derived invariance of higher structures on the Hochschild complex
  • [2] [Anonymous], 1994, INTRO HOMOLOGICAL AL
  • [3] [Anonymous], 2012, ALGEBRAIC OPERADS
  • [4] [Anonymous], 1970, Ann. Sci. Ecole Norm. Sup.
  • [5] AVRAMOV L, 1986, LECT NOTES MATH, V1183, P1
  • [6] Representation homology, Lie algebra cohomology and the derived Harish-Chandra homomorphism
    Berest, Yuri
    Felder, Giovanni
    Patotski, Sasha
    Ramadoss, Ajay C.
    Willwacher, Thomas
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (09) : 2811 - 2893
  • [7] Dual Hodge decompositions and derived Poisson brackets
    Berest, Yuri
    Ramadoss, Ajay C.
    Zhang, Yining
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (03): : 2029 - 2070
  • [8] Stable representation homology and Koszul duality
    Berest, Yuri
    Ramadoss, Ajay
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 715 : 143 - 187
  • [9] Derived Representation Schemes and Noncommutative Geometry
    Berest, Yuri
    Felder, Giovanni
    Ramadoss, Ajay
    [J]. EXPOSITORY LECTURES ON REPRESENTATION THEORY, 2014, 607 : 113 - +
  • [10] Derived representation schemes and cyclic homology
    Berest, Yuri
    Khachatryan, George
    Ramadoss, Ajay
    [J]. ADVANCES IN MATHEMATICS, 2013, 245 : 625 - 689