Portfolio selection under distributional uncertainty: A relative robust CVaR approach

被引:86
作者
Huang, Dashan [2 ]
Zhu, Shushang [3 ]
Fabozzi, Frank J. [4 ]
Fukushima, Masao [1 ]
机构
[1] Kyoto Univ, Dept Appl Math & Phys, Grad Sch Informat, Kyoto 6068501, Japan
[2] Washington Univ, John M Olin Sch Business, St Louis, MO 63130 USA
[3] Fudan Univ, Dept Management Sci, Sch Management, Shanghai 200433, Peoples R China
[4] Yale Univ, Sch Management, New Haven, CT 06520 USA
基金
日本学术振兴会; 美国国家科学基金会;
关键词
Conditional value-at-risk; Worst-case conditional value-at-risk; Relative robust conditional value-at-risk; Portfolio selection problem; Linear programming; VALUE-AT-RISK; ASSET ALLOCATION; OPTIMIZATION; PROGRAMS;
D O I
10.1016/j.ejor.2009.07.010
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Robust optimization, one of the most popular topics in the field of optimization and control since the late 1990s, deals with an optimization problem involving uncertain parameters. In this paper, we consider the relative robust conditional Value-at-risk portfolio selection problem where the underlying probability distribution of portfolio return is only known to belong to a certain set. Our approach not only takes into account the worst-case scenarios of the uncertain distribution, but also pays attention to the best possible decision with respect to each realization of the distribution. We also illustrate how to construct a robust portfolio with multiple experts (priors) by solving a sequence of linear programs or a second-order cone program. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 38 条
  • [1] Robust convex optimization
    Ben-Tal, A
    Nemirovski, A
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) : 769 - 805
  • [2] Robust solutions of uncertain linear programs
    Ben-Tal, A
    Nemirovski, A
    [J]. OPERATIONS RESEARCH LETTERS, 1999, 25 (01) : 1 - 13
  • [3] ON THE SENSITIVITY OF MEAN-VARIANCE-EFFICIENT PORTFOLIOS TO CHANGES IN ASSET MEANS - SOME ANALYTICAL AND COMPUTATIONAL RESULTS
    BEST, MJ
    GRAUER, RR
    [J]. REVIEW OF FINANCIAL STUDIES, 1991, 4 (02) : 315 - 342
  • [4] Black F., 1992, Financial Analysts Journal, V48, P28, DOI DOI 10.2469/FAJ.V48.N5.28
  • [5] Broadie M., 1993, Annals of Operations Research, V45, P21, DOI 10.1007/BF02282040
  • [6] Chopra V. K., 1993, J INVESTING, V2, P51
  • [7] THE EFFECT OF ERRORS IN MEANS, VARIANCES, AND COVARIANCES ON OPTIMAL PORTFOLIO CHOICE
    CHOPRA, VK
    ZIEMBA, WT
    [J]. JOURNAL OF PORTFOLIO MANAGEMENT, 1993, 19 (02) : 6 - 11
  • [8] Robust portfolio selection using linear-matrix inequalities
    Costa, OLV
    Paiva, AC
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2002, 26 (06) : 889 - 909
  • [9] El Ghaoui L, 2003, OPER RES, V51, P543, DOI 10.1287/opre.51.4.543.16101
  • [10] FABOZZI FJ, ANN OPERATI IN PRESS