DECAY OF SOLUTIONS FOR A DISSIPATIVE HIGHER-ORDER BOUSSINESQ SYSTEM ON A PERIODIC DOMAIN

被引:8
作者
Bautista, George J. [1 ]
Pazoto, Ademir F. [2 ]
机构
[1] Univ Privada Norte, Campus Brena,Av Tingo Maria 1122, Lima, Peru
[2] Univ Fed Rio de Janeiro, Inst Math, POB 68530, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
Boussinesq system; generalized damping; stabilization; Fourier expansion; decay rate; NONLINEAR DISPERSIVE MEDIA; AMPLITUDE LONG WAVES; TIME BEHAVIOR; STABILIZATION; EQUATIONS;
D O I
10.3934/cpaa.2020035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are concerned with a Boussinesq system for small-amplitude long waves arising in nonlinear dispersive media. Considerations will be given for the global well-posedness and the time decay rates of solutions when the model is posed on a periodic domain and a general class of damping operator acts in each equation. By means of spectral analysis and Fourier expansion, we prove that the solutions of the linearized system decay uniformly or not to zero, depending on the parameters of the damping operators. In the uniform decay case, the result is extended for the full system.
引用
收藏
页码:747 / 769
页数:23
相关论文
共 17 条
[1]  
Arrowsmith D., 1992, DYNAMICAL SYSTEMS DI, V5
[2]   Large-Time Behavior of a Linear Boussinesq System for the Water Waves [J].
Bautista, George J. ;
Pazoto, Ademir F. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (02) :959-978
[3]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
NONLINEARITY, 2004, 17 (03) :925-952
[4]   AN EVALUATION OF A MODEL EQUATION FOR WATER-WAVES [J].
BONA, JL ;
PRITCHARD, WG ;
SCOTT, LR .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 302 (1471) :457-510
[5]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. 1: Derivation and linear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :283-318
[6]   Zero-dissipation limit for nonlinear waves [J].
Bona, JL ;
Wu, J .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02) :275-301
[7]  
Boussinesq J., 1871, CR HEBD ACAD SCI, V72, P755
[8]   CONTROL OF A BOUSSINESQ SYSTEM OF KDV-KDV TYPE ON A BOUNDED INTERVAL [J].
Capistrano-Filho, Roberto A. ;
Pazoto, Ademir F. ;
Rosier, Lionel .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
[9]  
Cazenave T., 1988, Oxford Lecture Series in Mathematics and its Applications, V13
[10]   LONG-TIME BEHAVIOR OF SOLUTIONS OF A BBM EQUATION WITH GENERALIZED DAMPING [J].
Chehab, Jean-Paul ;
Garnier, Pierre ;
Mammeri, Youcef .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (07) :1897-1915