On the order of Schur multiplier of non-abelian p-groups

被引:34
作者
Niroomand, Peyman [1 ]
机构
[1] Damghan Univ Basic Sci, Sch Math & Comp Sci, Damghan, Iran
关键词
Schur multiplier; Non-abelian p-groups; FINITE-GROUP; INEQUALITIES;
D O I
10.1016/j.jalgebra.2009.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group of order p(n), Green proved that M(G). its Schur multiplier is of order at most p(1/2n(n-1)). Later Berkovich showed that the equality holds if and only if G is elementary abelian of order p(n). In the present paper, we prove that if G is a non-abelian p-group of order p(n) with derived subgroup of order p(k), then vertical bar M(G)vertical bar <= p(1/2(n+k-2)(n-k-1)+1). In particular, vertical bar M(G)vertical bar <= p(1/2(n-1)(n-2)+1), and the equality holds in this last bound if and only if G = H x Z, where H is extra special of order p(3) and exponent p, and Z is an elementary abelian p-group. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:4479 / 4482
页数:4
相关论文
共 50 条
[41]   Groups of finite non-Abelian sectional rank [J].
O. Yu. Dashkova .
Ukrainian Mathematical Journal, 1997, 49 (10) :1494-1500
[42]   Infinite Groups with Complemented Non-Abelian Subgroups [J].
P. P. Baryshovets .
Ukrainian Mathematical Journal, 2015, 67 :506-514
[43]   The Schur Multiplier of a Pair of Groups [J].
Graham Ellis .
Applied Categorical Structures, 1998, 6 :355-371
[44]   The Schur multiplier of a pair of groups [J].
Ellis, G .
APPLIED CATEGORICAL STRUCTURES, 1998, 6 (03) :355-371
[45]   On Characterizing Pairs of Non-Abelian Nilpotent and Filiform Lie Algebras by their Schur Multipliers [J].
Arabyani, H. ;
Safa, H. ;
Saeedi, F. .
JOURNAL OF MATHEMATICAL EXTENSION, 2016, 10 (04) :61-73
[46]   CHARACTERIZING FINITE p-GROUPS BY THEIR SCHUR MULTIPLIERS, t(G)=5 [J].
Niroomand, Peyman .
MATHEMATICAL REPORTS, 2015, 17 (02) :249-254
[47]   ON THE GENUS OF THE COMMUTING GRAPHS OF FINITE NON-ABELIAN GROUPS [J].
Das, Ashish Kumar ;
Nongsiang, Deiborlang .
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2016, 19 :91-109
[48]   Characterization of finite -groups by their Schur multiplier [J].
Hatui, Sumana .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (04)
[49]   On the size of the Schur multiplier of finite groups [J].
Kalithasan, Sathasivam ;
Mavely, Tony Nixon ;
Thomas, Viji Zachariah .
JOURNAL OF ALGEBRA, 2025, 668 :420-446
[50]   Schur's theorem and its relation to the closure properties of the non-abelian tensor product [J].
Donadze, G. ;
Ladra, M. ;
Paez-Guillan, P. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) :993-1002