On the order of Schur multiplier of non-abelian p-groups

被引:34
作者
Niroomand, Peyman [1 ]
机构
[1] Damghan Univ Basic Sci, Sch Math & Comp Sci, Damghan, Iran
关键词
Schur multiplier; Non-abelian p-groups; FINITE-GROUP; INEQUALITIES;
D O I
10.1016/j.jalgebra.2009.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group of order p(n), Green proved that M(G). its Schur multiplier is of order at most p(1/2n(n-1)). Later Berkovich showed that the equality holds if and only if G is elementary abelian of order p(n). In the present paper, we prove that if G is a non-abelian p-group of order p(n) with derived subgroup of order p(k), then vertical bar M(G)vertical bar <= p(1/2(n+k-2)(n-k-1)+1). In particular, vertical bar M(G)vertical bar <= p(1/2(n-1)(n-2)+1), and the equality holds in this last bound if and only if G = H x Z, where H is extra special of order p(3) and exponent p, and Z is an elementary abelian p-group. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:4479 / 4482
页数:4
相关论文
共 50 条
[31]   On classification of groups having Schur multiplier of maximum order [J].
Rai, Pradeep K. .
ARCHIV DER MATHEMATIK, 2016, 107 (05) :455-460
[32]   On the Non-abelian Tensor Product of Groups [J].
Moghaddam, Mohammad Reza R. ;
Mirzaei, Fateme .
ALGEBRA COLLOQUIUM, 2011, 18 (03) :429-436
[33]   Classification of Finite p-Groups by the Size of Their Schur Multipliers [J].
Niroomand, Peyman ;
Johari, Farangis .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) :2137-2150
[34]   Classification of Finite p-Groups by the Size of Their Schur Multipliers [J].
Peyman Niroomand ;
Farangis Johari .
Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 :2137-2150
[35]   The Schur Multiplier and Nonabelian Tensor Square of Some Groups of p-Power Order [J].
Zainal, Rosita ;
Ali, Nor Muhainiah Mohd ;
Sarmin, Nor Haniza ;
Rashid, Samad .
PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 :1039-1044
[36]   On classification of groups having Schur multiplier of maximum order II [J].
Pradeep K. Rai .
Archiv der Mathematik, 2018, 111 :129-133
[37]   On classification of groups having Schur multiplier of maximum order II [J].
Rai, Pradeep K. .
ARCHIV DER MATHEMATIK, 2018, 111 (02) :129-133
[38]   On Infinite Groups with Complemented Non-Abelian Subgroups [J].
Baryshovets, P. P. .
UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (11) :1599-1611
[39]   Infinite Groups with Complemented Non-Abelian Subgroups [J].
Baryshovets, P. P. .
UKRAINIAN MATHEMATICAL JOURNAL, 2015, 67 (04) :506-514
[40]   On Infinite Groups with Complemented Non-Abelian Subgroups [J].
P. P. Baryshovets .
Ukrainian Mathematical Journal, 2014, 65 :1599-1611