On the order of Schur multiplier of non-abelian p-groups

被引:34
作者
Niroomand, Peyman [1 ]
机构
[1] Damghan Univ Basic Sci, Sch Math & Comp Sci, Damghan, Iran
关键词
Schur multiplier; Non-abelian p-groups; FINITE-GROUP; INEQUALITIES;
D O I
10.1016/j.jalgebra.2009.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group of order p(n), Green proved that M(G). its Schur multiplier is of order at most p(1/2n(n-1)). Later Berkovich showed that the equality holds if and only if G is elementary abelian of order p(n). In the present paper, we prove that if G is a non-abelian p-group of order p(n) with derived subgroup of order p(k), then vertical bar M(G)vertical bar <= p(1/2(n+k-2)(n-k-1)+1). In particular, vertical bar M(G)vertical bar <= p(1/2(n-1)(n-2)+1), and the equality holds in this last bound if and only if G = H x Z, where H is extra special of order p(3) and exponent p, and Z is an elementary abelian p-group. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:4479 / 4482
页数:4
相关论文
共 50 条
[21]   Non-abelian Sylow subgroups of finite groups of even order [J].
Naoki Chigira ;
Nobuo Iiyori ;
Hiroyoshi Yamaki .
Inventiones mathematicae, 2000, 139 :525-539
[22]   The maximum number of triangles in a graph and its relation to the size of the Schur multiplier of special p-groups [J].
Mavely, Tony Nixon ;
Thomas, Viji Zachariah .
COMMUNICATIONS IN ALGEBRA, 2023, 51 (07) :2983-2994
[23]   ON THE 2-NILPOTENT MULTIPLIER OF FINITE p-GROUPS [J].
Niroomand, Peyman ;
Parvizi, Mohsen .
GLASGOW MATHEMATICAL JOURNAL, 2015, 57 (01) :201-210
[24]   CHARACTERIZATION OF FINITE p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS (t(G)=7) [J].
Jafari, S. H. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (07) :2567-2576
[25]   c-Nilpotent Multiplier of Finite p-Groups [J].
Niroomand, Peyman ;
Johari, Farangis ;
Parvizi, Mohsen .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) :941-956
[26]   CHARACTERIZATION OF FINITE p-GROUPS BY THEIR SCHUR MULTIPLIERS [J].
Khamseh, Elaheh ;
Moghaddam, Mohammad Reza R. ;
Saeedi, Farshid .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (05)
[27]   On classification of groups having Schur multiplier of maximum order [J].
Pradeep K. Rai .
Archiv der Mathematik, 2016, 107 :455-460
[28]   On the Schur Multiplier of Groups of Order 8q [J].
Rashid, S. ;
Sarmin, N. H. ;
Erfanian, A. ;
Ali, N. M. Mohd .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2012, 28 (04) :18-22
[29]   Some inequalities for the order of the Schur multiplier of a pair of groups [J].
Moghaddam, Mohammad Reza R. ;
Salemkar, Ali Reza ;
Karimi, Taghi .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (07) :2481-2486
[30]   On classification of groups having Schur multiplier of maximum order [J].
Rai, Pradeep K. .
ARCHIV DER MATHEMATIK, 2016, 107 (05) :455-460