Periodic motions of forced infinite lattices with nearest neighbor interaction

被引:17
作者
Torres, PJ [1 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2000年 / 51卷 / 03期
关键词
lattice; Toda interaction; singular forces; a priori bounds; Brouwer degree;
D O I
10.1007/s000330050001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved the existence of an infinite number of periodic solutions of a infinite lattice of particles with a periodic perturbation and nearest neighbor interaction between particles, by using a priori bounds and topological degree together with a limiting argument. We consider a Toda lattice and a singular repulsive lattice as main situations. The question of order between particles is also discussed.
引用
收藏
页码:333 / 345
页数:13
相关论文
共 13 条
[1]  
Arioli G, 1996, MATH Z, V223, P627
[2]   Existence and numerical approximation of periodic motions of an infinite lattice of particles [J].
Arioli, G ;
Gazzola, F .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 (06) :898-912
[3]  
ARIOLI G, IN PRESS DYN SYST AP
[4]  
ARIOLI G, 1995, NONLINEAR ANAL TMA, V26, P1103
[5]   CONTINUATION THEOREMS FOR PERIODIC PERTURBATIONS OF AUTONOMOUS SYSTEMS [J].
CAPIETTO, A ;
MAWHIN, J ;
ZANOLIN, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (01) :41-72
[6]   PERIODIC-SOLUTIONS OF SOME LIENARD EQUATIONS WITH SINGULARITIES [J].
HABETS, P ;
SANCHEZ, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) :1035-1044
[7]   ON PERIODIC-SOLUTIONS OF NONLINEAR DIFFERENTIAL-EQUATIONS WITH SINGULARITIES [J].
LAZER, AC ;
SOLIMINI, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (01) :109-114
[8]  
Lloyd N. G., 1978, DEGREE THEORY
[9]   ON PERIODIC MOTIONS OF LATTICES OF TODA TYPE VIA CRITICAL-POINT THEORY [J].
RUF, B ;
SRIKANTH, PN .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (04) :369-385
[10]  
Toda M., 1989, THEORY NONLINEAR LAT, DOI DOI 10.1007/978-3-642-83219-2