Positive Solutions for a Fractional p-Laplacian Boundary Value Problem

被引:13
作者
Xu, Jiafa [1 ]
O'Regan, Donal [2 ,3 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[2] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah, Saudi Arabia
关键词
fractional p-Laplacian boundary value problem; positive solution; monotone iterative method; fixed point index; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.2298/FIL1706549X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of positive solutions for the fractional p-Laplacian boundary value problem { D-0+(beta)(phi(p)(D(0+)(alpha)u(t))) = f(t,u(t)), t is an element of(0,1), u(0)=u'(0) = 0,u'(1) = au'(xi),D(0+)(alpha)u(0) = 0, D(0+)(alpha)u(1) = bD(0+)(alpha)u(eta), where 2 < alpha <= 3, 1 < beta <= 2, D-0+(alpha),D-0+(alpha) are the standard Riemann-Liouville fractional derivatives, phi(p)(s) = |s|(p) (2)s, p > 1,phi(1)(p) = phi(q), 1/p + 1/q = 1, 0 < xi,eta < 1, 0 <= a <xi(2) (alpha) , 0 <= b < eta 1-beta/p-1 and f is an element of C([0,1] x [0,+infinity); [0,+infinity)). Using the monotone iterative method and the fixed point index theory in cones, we establish two new existence results when the nonlinearity f is allowed to grow (p-1)-sublinearly and (p-1)-superlinearly at infinity.
引用
收藏
页码:1549 / 1558
页数:10
相关论文
共 14 条
[11]   Positive solutions for a class of fractional differential equations with integral boundary conditions [J].
Sun, Yongping ;
Zhao, Min .
APPLIED MATHEMATICS LETTERS, 2014, 34 :17-21
[12]   Positive solutions for a boundary-value problem with Riemann-Liouville fractional derivative [J].
Xu, Jiafa ;
Wei, Zhongli ;
Ding, Youzheng .
LITHUANIAN MATHEMATICAL JOURNAL, 2012, 52 (04) :462-476
[13]   Positive solutions for a fourth order p-Laplacian boundary value problem [J].
Xu, Jiafa ;
Yang, Zhilin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) :2612-2623
[14]   The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations [J].
Zhao, Yige ;
Sun, Shurong ;
Han, Zhenlai ;
Li, Qiuping .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) :2086-2097