Positive Solutions for a Fractional p-Laplacian Boundary Value Problem

被引:13
作者
Xu, Jiafa [1 ]
O'Regan, Donal [2 ,3 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[2] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah, Saudi Arabia
关键词
fractional p-Laplacian boundary value problem; positive solution; monotone iterative method; fixed point index; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.2298/FIL1706549X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of positive solutions for the fractional p-Laplacian boundary value problem { D-0+(beta)(phi(p)(D(0+)(alpha)u(t))) = f(t,u(t)), t is an element of(0,1), u(0)=u'(0) = 0,u'(1) = au'(xi),D(0+)(alpha)u(0) = 0, D(0+)(alpha)u(1) = bD(0+)(alpha)u(eta), where 2 < alpha <= 3, 1 < beta <= 2, D-0+(alpha),D-0+(alpha) are the standard Riemann-Liouville fractional derivatives, phi(p)(s) = |s|(p) (2)s, p > 1,phi(1)(p) = phi(q), 1/p + 1/q = 1, 0 < xi,eta < 1, 0 <= a <xi(2) (alpha) , 0 <= b < eta 1-beta/p-1 and f is an element of C([0,1] x [0,+infinity); [0,+infinity)). Using the monotone iterative method and the fixed point index theory in cones, we establish two new existence results when the nonlinearity f is allowed to grow (p-1)-sublinearly and (p-1)-superlinearly at infinity.
引用
收藏
页码:1549 / 1558
页数:10
相关论文
共 14 条
[1]   Boundary Value Problems for a Class of Sequential Integrodifferential Equations of Fractional Order [J].
Ahmad, Bashir ;
Nieto, Juan J. .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]   Existence and uniqueness of positive and nondecreasing solutions for a class of fractional boundary value problems involving the p-Laplacian operator [J].
Araci, Serkan ;
Sen, Erdogan ;
Acikgoz, Mehmet ;
Srivastava, Hari M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2015,
[4]   Positive solutions for boundary value problem of nonlinear fractional differential equation [J].
Bai, ZB ;
Lü, HS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :495-505
[5]   On positive solutions of a nonlocal fractional boundary value problem [J].
Bai, Zhanbing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :916-924
[7]  
Guo D., 1988, NONLINEAR PROBLEMS A
[8]   The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application [J].
Jiang, Daqing ;
Yuan, Chengjun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :710-719
[9]  
Podlubny I., 1999, MATH SCI ENG, V198
[10]  
Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications